IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i11p493-d952639.html
   My bibliography  Save this article

How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts

Author

Listed:
  • Guido Max Mantovani

    (Department of Economics and Finance, International University of Monaco, 98000 Monaco, Monaco
    The Teofilo Intato Institute, 20129 Milan, Italy
    Department of Management, Ca’ Foscari University of Venice, 30123 Venice, Italy)

  • Gregory Gadzinski

    (Department of Economics and Finance, International University of Monaco, 98000 Monaco, Monaco)

Abstract

This paper contributes to solving the puzzle of assessing the financial performance of private/unlisted companies. The inner characteristics of these companies make the adoption of traditional best practices in estimating risk premia difficult or impossible. Moreover, the lack of market data and comparable information biases the perception of corporate performance and generates the misallocation of credit fundings (both quantities and pricing). Hence, in this paper, we develop an Integrated Rating Methodology (IRM) to estimate a more efficient corporate “return-to-risk” measure. Our IRM is rooted in the seminal “certainty equivalent” model as developed by Lintner in 1965, but we modify it using a shortfall approach, and then compute a “confident equivalent” that is compliant with Fischer Black’s zero-beta model as well as the Basel agreements. An empirical application of the approach is conducted with a sample of 13,583 non-financial SMEs in the north-east regions of Italy, where there is evidence of inefficient bank financing. We back-test our IRM by rating these companies using corporate financial data during the period 2007–2014, which encompasses both the Great Financial Crisis and the European sovereign debt crisis. Our empirical results depict a clear crowding-out effect of credit allocations when we compare our IRM scoring measure with the actual raising ability and the cost of capital relating to these firms. We find that 36% of companies are underfunded, even if they have a superior IRM score, while 27% of them are funded without merit. Interestingly, this last figure is in line with the average non-performing loan ratio provided by official Italian statistics from 2015 to 2020. Therefore, we conclude that our IRM methodology is promising and may be better at estimating risk financing in small private companies (including start-ups) than internal banking models. These initial results will drive our forthcoming research towards creating an IRM 2.0.

Suggested Citation

  • Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:11:p:493-:d:952639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/11/493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/11/493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack Clark Francis, 2021. "Reformulating prospect theory to become a von Neumann–Morgenstern theory," Review of Quantitative Finance and Accounting, Springer, vol. 56(3), pages 965-985, April.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    4. Shigehiro Shinozaki, 2015. "A New Regime of SME Finance in Emerging Asia: Enhancing Access to Growth Capital and Policy Implications," World Scientific Book Chapters, in: Khee Giap Tan & Kong Yam Tan (ed.), Foreign Direct Investment and Small and Medium Enterprises Productivity and Access to Finance, chapter 5, pages 77-103, World Scientific Publishing Co. Pte. Ltd..
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Glennon, Dennis & Nigro, Peter, 2005. "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(5), pages 923-947, October.
    7. Altman, Edward I. & Esentato, Maurizio & Sabato, Gabriele, 2020. "Assessing the credit worthiness of Italian SMEs and mini-bond issuers," Global Finance Journal, Elsevier, vol. 43(C).
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    10. Allen, Linda & DeLong, Gayle & Saunders, Anthony, 2004. "Issues in the credit risk modeling of retail markets," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 727-752, April.
    11. Frame, W Scott & Srinivasan, Aruna & Woosley, Lynn, 2001. "The Effect of Credit Scoring on Small-Business Lending," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 33(3), pages 813-825, August.
    12. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    13. Galina Andreeva & Edward I. Altman, 2021. "The Value Of Personal Credit History In Risk Screening Of Entrepreneurs: Evidence From Marketplace Lending," Journal of Financial Management, Markets and Institutions (JFMMI), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    2. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    3. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    4. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    6. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    7. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    8. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    9. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    10. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    11. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    12. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    13. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    14. Shoukat Ali & Ramiz ur Rehman & Wang Yuan & Muhammad Ishfaq Ahmad & Rizwan Ali, 2022. "Does foreign institutional ownership mediate the nexus between board diversity and the risk of financial distress? A case of an emerging economy of China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 553-581, September.
    15. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    16. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    17. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
    18. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    19. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    20. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:11:p:493-:d:952639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.