IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2018i3p112-123.html
   My bibliography  Save this article

Нейросетевая Модель Диагностики Стадий Развивающегося Банкротства Корпораций // Neural Network Model Of Diagnostics Of Stages Of Developing Corporate Bankruptcy

Author

Listed:
  • S. Gorbatkov A.

    (Ufa branch of the Financial University)

  • S. Farkhieva A.

    (Ufa branch of the Financial University)

  • С. Горбатков А.

    (Уфимский филиал Финансового университета)

  • С. Фархиева А.

    (Уфимский филиал Финансового университета)

Abstract

The article deals with the problem of developing an information and mathematical model to support decisionmaking on the restructuring of corporate debt in the banking technologies of financial management. The purpose of the article is to create a model that allows diagnostic of the stages of developing corporate crisis in difficult conditions of incomplete and noisy data. The model should serve as a tool for improving the objectivity and quality of decisions on the restructuring of corporate debt. The study was conducted on the basis of neural network modelling and system analysis methods, methods of decision-making theory, a solution of inverse problems of interpretation, i.e. extraction of new knowledge from data. We developed an original method of constructing neural network logistic model of bankruptcies (NNLMB) in the difficult conditions of the simulation. New features of the method, increasing the predictive power of the model, are: 1) optimal selection of factors using Bayesian ensemble of auxiliary neural networks, performing compression of factor space; 2) step compression of factors based on the generalized Harrington desirability function; 3) regularization of the main (working) neural network model on Bayesian ensemble of neural networks. NNLMB is tested on real data from corporations of the construction industry. The number of correctly identified objects on the test set was more than 90% on all neural networks of the ensemble. In NNLMB, a sufficiently high prognostic quality of the neural network model is provided by new features of the method and generates an emergent effect, which was proven in computational experiments: the improvement of the quality of the neural network model by the criterion of correctly identified objects Θ is 3.336 times with the compression of factors by 1.35 times. NNLMB can be applied to a wide range of financial management tasks. В статье исследуется проблема разработки информационно-математической модели для поддержки принятия решений по реструктуризации кредитной задолженности корпораций в банковских технологиях финансового менеджмента.Цель статьи — создание модели, позволяющей диагностировать стадии развивающегося кризиса корпораций в сложных условиях неполноты и зашумленности данных. Модель должна служить инструментом повышения объективности и качества принимаемых решений по реструктуризации кредитной задолженности корпораций. Исследование проводилось на основе нейросетевых методов моделирования и системного анализа, методов теории принятия решений, решения обратных задач интерпретации, т.е. извлечения новых знаний из данных. Разработан оригинальный метод построения нейросетевой логистической модели банкротств (НЛМБ) в сложных условиях моделирования. Новыми признаками метода, увеличивающими прогностическую силу модели, являются: 1) оптимальный отбор факторов с помощью байесовского ансамбля вспомогательных нейросетей, осуществляющих компрессию факторного пространства; 2) ступенчатая компрессия факторов на основе обобщенной функции желательности Харрингтона; 3) регуляризация основной (рабочей) нейросетевой модели на байесовском ансамбле нейросетей. НЛМБ апробирована на реальных данных корпораций строительной отрасли. Число верно идентифицированных объектов на тестовом множестве составило более 90% на всех нейросетях ансамбля.В НЛМБ достаточно высокое прогностическое качество нейросетевой модели обеспечивается новыми признаками метода и порождает эмерджентный эффект, проверенный в вычислительных экспериментах: улучшение качества нейросетевой модели по критерию правильно идентифицированных объектов Θ составляет 3,336 раза при компрессии факторов в 1,35 раза. НЛМБ может быть распространен на широкий круг задач финансового менеджмента.

Suggested Citation

  • S. Gorbatkov A. & S. Farkhieva A. & С. Горбатков А. & С. Фархиева А., 2018. "Нейросетевая Модель Диагностики Стадий Развивающегося Банкротства Корпораций // Neural Network Model Of Diagnostics Of Stages Of Developing Corporate Bankruptcy," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(3), pages 112-123.
  • Handle: RePEc:scn:financ:y:2018:i:3:p:112-123
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/662/495.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    2. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Kristóf, Tamás, 2008. "A csődelőrejelzés és a nem fizetési valószínűség számításának módszertani kérdéseiről [Some methodological questions of bankruptcy prediction and probability of default estimation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 441-461.
    4. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    5. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    6. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    7. Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
    8. Amir Ghafourian Shagerdi & Ali Mahdavipour & Reza Jahanshiri Ariyan Tashakori Baghdar & Mohammad Sajjad Ghafourian Shagerdi, 2020. "Investment Efficiency and Audit Fee from the Perspective of the Role of Financial Distress," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 318-333.
    9. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    10. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    11. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    12. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    13. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    14. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    15. Elizabeth Demers & Philip Joos, 2007. "IPO Failure Risk," Journal of Accounting Research, Wiley Blackwell, vol. 45(2), pages 333-371, May.
    16. Arati Kale & Devendra Kale & Sriram Villupuram, 2024. "Decomposition of risk for small size and low book-to-market stocks," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 96-112, February.
    17. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    18. de Oliveira Leite, Rodrigo & dos Santos Mendes, Layla & de Lacerda Moreira, Rafael, 2020. "Profit status of microfinance institutions and incentives for earnings management," Research in International Business and Finance, Elsevier, vol. 54(C).
    19. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    20. Taieb Hamadi & Sami El Omari, & Wafa Khlif, 2012. "Poids De L'Avis De L'Expert Comptable Judiciaire Dans La Decision Du Juge En Matiere De Redressement Judiciaire : Cas De La Tunisie," Post-Print hal-00937922, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2018:i:3:p:112-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.