Нейросетевая Модель Диагностики Стадий Развивающегося Банкротства Корпораций // Neural Network Model Of Diagnostics Of Stages Of Developing Corporate Bankruptcy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marco Botta & Luca Colombo, 2016. "Macroeconomic and Institutional Determinants of Capital Structure Decisions," DISCE - Working Papers del Dipartimento di Economia e Finanza def038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
- Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014.
"Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
- Giordani, Paolo & Jacobson, Tor & von Schedvin , Erik & Villani, Mattias, 2011. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Working Paper Series 256, Sveriges Riksbank (Central Bank of Sweden).
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Richardson, Grant & Taylor, Grantley & Lanis, Roman, 2015. "The impact of financial distress on corporate tax avoidance spanning the global financial crisis: Evidence from Australia," Economic Modelling, Elsevier, vol. 44(C), pages 44-53.
- Kristóf, Tamás, 2008. "A csődelőrejelzés és a nem fizetési valószínűség számításának módszertani kérdéseiről [Some methodological questions of bankruptcy prediction and probability of default estimation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 441-461.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
- Lauren Stagnol, 2015.
"Designing a corporate bond index on solvency criteria,"
EconomiX Working Papers
2015-39, University of Paris Nanterre, EconomiX.
- Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," Working Papers hal-04141378, HAL.
- Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
- Maurice Peat, 2007.
"Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach,"
Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
- Maurice Peat, 2003. "Factors Affecting the Probability of Bankruptcy," Working Paper Series 130, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Wen Su, 2021. "Default Distances Based on the CEV-KMV Model," Papers 2107.10226, arXiv.org, revised May 2022.
- Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
- Amir Ghafourian Shagerdi & Ali Mahdavipour & Reza Jahanshiri Ariyan Tashakori Baghdar & Mohammad Sajjad Ghafourian Shagerdi, 2020. "Investment Efficiency and Audit Fee from the Perspective of the Role of Financial Distress," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 318-333.
- Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
- Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
- Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
- Jing Zeng & Xiongyuan Wang & Kam C. Chan, 2021. "Does the value‐added tax Reform increase a firm’s collateral bank loans? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 29(4), pages 681-710, October.
- Jason J. Constable & David R. Woodliff, 1994. "Predicting Corporate Failure Using Publicly Available Information," Australian Accounting Review, CPA Australia, vol. 4(7), pages 13-27, May.
- Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
More about this item
Keywords
neural network model; stages of development of corporate bankruptcy; support of decisions on credit debt restructuring; нейросетевая модель; стадии развития банкротства корпораций; поддержка решений реструктуризации кредитной задолженности;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2018:i:3:p:112-123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.