IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v30y2024i6p1404-1422.html
   My bibliography  Save this article

Modeling and forecasting listed tourism firms’ risk in China using a trend asymmetric GARCH-MIDAS model

Author

Listed:
  • Peng Yang
  • Haiyan Song
  • Long Wen
  • Han Liu

Abstract

This study employs the multivariate trend asymmetric GARCH-MIDAS (TAGM) model, an extension of the GARCH-MIDAS model, to explore the potential asymmetric impact of uncertainty shocks, including oil and infectious disease shocks, on the long-term volatility of China’s listed tourism firms. Furthermore, we test the out-of-sample forecasting accuracy of uncertainty shocks to China’s listed tourism firms’ risk, which is measured by the volatility of tourism stocks after the outbreak of coronavirus disease 2019 (COVID-19). The results show that uncertainty shocks have a significant asymmetric effect on the long-run volatility of tourism stocks. The included uncertainty shocks improved accuracy in forecasting China’s listed tourism firms’ risk after the pandemic outbreak. The empirical results have important implications for tourism investment strategies in unstable environments.

Suggested Citation

  • Peng Yang & Haiyan Song & Long Wen & Han Liu, 2024. "Modeling and forecasting listed tourism firms’ risk in China using a trend asymmetric GARCH-MIDAS model," Tourism Economics, , vol. 30(6), pages 1404-1422, September.
  • Handle: RePEc:sae:toueco:v:30:y:2024:i:6:p:1404-1422
    DOI: 10.1177/13548166231207671
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/13548166231207671
    Download Restriction: no

    File URL: https://libkey.io/10.1177/13548166231207671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    2. Park, Jungwook & Ratti, Ronald A., 2008. "Oil price shocks and stock markets in the U.S. and 13 European countries," Energy Economics, Elsevier, vol. 30(5), pages 2587-2608, September.
    3. Qin, Yun & Chen, Jinyu & Dong, Xuesong, 2021. "Oil prices, policy uncertainty and travel and leisure stocks in China," Energy Economics, Elsevier, vol. 96(C).
    4. Hsiao-I Kuo & Chia-Lin Chang & Bing-Wen Huang & Chi-Chung Chen & Michael McAleer, 2009. "Estimating the Impact of Avian Flu on International Tourism Demand Using Panel Data," Tourism Economics, , vol. 15(3), pages 501-511, September.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Ling-en Wang & Bing Tian & Viachaslau Filimonau & Zhizhong Ning & Xuechun Yang, 2022. "The impact of the COVID-19 pandemic on revenues of visitor attractions: An exploratory and preliminary study in China," Tourism Economics, , vol. 28(1), pages 153-174, February.
    7. Karabulut, Gokhan & Bilgin, Mehmet Huseyin & Demir, Ender & Doker, Asli Cansin, 2020. "How pandemics affect tourism: International evidence," Annals of Tourism Research, Elsevier, vol. 84(C).
    8. He, Feng & Ma, Feng & Wang, Ziwei & Yang, Bohan, 2021. "Asymmetric volatility spillover between oil-importing and oil-exporting countries' economic policy uncertainty and China's energy sector," International Review of Financial Analysis, Elsevier, vol. 75(C).
    9. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    10. Albert Assaf & Raffaele Scuderi, 2020. "COVID-19 and the recovery of the tourism industry," Tourism Economics, , vol. 26(5), pages 731-733, August.
    11. Bai, Lan & Wei, Yu & Wei, Guiwu & Li, Xiafei & Zhang, Songyun, 2021. "Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective," Finance Research Letters, Elsevier, vol. 40(C).
    12. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    13. Martin Falk & Eva Hagsten & Xiang Lin, 2023. "Uneven domestic tourism demand in times of pandemic," Tourism Economics, , vol. 29(3), pages 596-611, May.
    14. Lucie Plzáková & Egon Smeral, 2022. "Impact of the COVID-19 crisis on European tourism," Tourism Economics, , vol. 28(1), pages 91-109, February.
    15. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    16. Jiachong Hu & Xiao-Guang Yue & Deimante Teresiene & Irfan Ullah, 2022. "How COVID19 pandemic affect film and drama industry in China: an evidence of nonlinear empirical analysis," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 2254-2272, December.
    17. Siamand Hesami & Bezhan Rustamov & Husam Rjoub & Wing-Keung Wong, 2020. "Implications of Oil Price Fluctuations for Tourism Receipts: The Case of Oil Exporting Countries," Energies, MDPI, vol. 13(17), pages 1-17, August.
    18. Schiff, Aaron & Becken, Susanne, 2011. "Demand elasticity estimates for New Zealand tourism," Tourism Management, Elsevier, vol. 32(3), pages 564-575.
    19. Mohanty, Sunil & Nandha, Mohan & Habis, Essam & Juhabi, Eid, 2014. "Oil price risk exposure: The case of the U.S. Travel and Leisure Industry," Energy Economics, Elsevier, vol. 41(C), pages 117-124.
    20. Shahzad, Syed Jawad Hussain & Caporin, Massimiliano, 2020. "On the volatilities of tourism stocks and oil," Annals of Tourism Research, Elsevier, vol. 81(C).
    21. Oguzhan Cepni & Tarik Dogru & Ozgur Ozdemir, 2023. "The contagion effect of COVID-19-induced uncertainty on US tourism sector: Evidence from time-varying granger causality test," Tourism Economics, , vol. 29(4), pages 906-928, June.
    22. Oguz Ersan & Sagi Akron & Ender Demir, 2019. "The effect of European and global uncertainty on stock returns of travel and leisure companies," Tourism Economics, , vol. 25(1), pages 51-66, February.
    23. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    24. Ming-Hsiang Chen, 2013. "The Impact of Demand and Supply Shocks on US Hospitality Index Returns," Tourism Economics, , vol. 19(2), pages 349-371, April.
    25. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    26. Omneya Abdelsalam & Ahmet Faruk Aysan & Oguzhan Cepni & Mustafa Disli, 2023. "The spillover effects of the COVID-19 pandemic: Which subsectors of tourism have been affected more?," Tourism Economics, , vol. 29(2), pages 559-567, March.
    27. Becken, Susanne & Lennox, James, 2012. "Implications of a long-term increase in oil prices for tourism," Tourism Management, Elsevier, vol. 33(1), pages 133-142.
    28. James Lennox, 2012. "Impacts of High Oil Prices on Tourism in New Zealand," Tourism Economics, , vol. 18(4), pages 781-800, August.
    29. Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salisu, Afees A. & Demirer, Riza & Gupta, Rangan, 2022. "Financial turbulence, systemic risk and the predictability of stock market volatility," Global Finance Journal, Elsevier, vol. 52(C).
    2. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    3. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    4. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    5. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    6. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    7. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    8. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    9. Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
    10. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    11. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    12. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    13. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
    15. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Liu, Tao & Guan, Xinyue & Wei, Yigang & Xue, Shan & Xu, Liang, 2023. "Impact of economic policy uncertainty on the volatility of China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 121(C).
    17. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    18. Bjoern Schulte-Tillman & Mawuli Segnon & Bernd Wilfling, 2022. "Financial-market volatility prediction with multiplicative Markov-switching MIDAS components," CQE Working Papers 9922, Center for Quantitative Economics (CQE), University of Muenster.
    19. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    20. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:30:y:2024:i:6:p:1404-1422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.