IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v51y2022i3p963-982.html
   My bibliography  Save this article

The Double Bind of Qualitative Comparative Analysis

Author

Listed:
  • Vincent Arel-Bundock

Abstract

Qualitative comparative analysis (QCA) is an influential methodological approach motivated by set theory and boolean logic. QCA proponents have developed algorithms to analyze quantitative data, in a bid to uncover necessary and sufficient conditions where causal relationships are complex, conditional, or asymmetric. This article uses computer simulations to show that researchers in the QCA tradition face a vexing double bind. On the one hand, QCA algorithms often require large data sets in order to recover an accurate causal model, even if that model is relatively simple. On the other hand, as data sets increase in size, it becomes harder to guarantee data integrity, and QCA algorithms can be highly sensitive to measurement error, data entry mistakes, or misclassification.

Suggested Citation

  • Vincent Arel-Bundock, 2022. "The Double Bind of Qualitative Comparative Analysis," Sociological Methods & Research, , vol. 51(3), pages 963-982, August.
  • Handle: RePEc:sae:somere:v:51:y:2022:i:3:p:963-982
    DOI: 10.1177/0049124119882460
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124119882460
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124119882460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Herndon & Michael Ash & Robert Pollin, 2014. "Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 38(2), pages 257-279.
    2. Andrew Kerner & Morten Jerven & Alison Beatty, 2017. "Does it pay to be poor? Testing for systematically underreported GNI estimates," The Review of International Organizations, Springer, vol. 12(1), pages 1-38, March.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    2. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    3. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    6. Roberto Martino & Phu Nguyen-Van, 2014. "Labour market regulation and fiscal parameters: A structural model for European regions," Working Papers of BETA 2014-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    7. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    8. İbrahim Özmen & Mihai Mutascu, 2024. "Public Debt and Growth: New Insights," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 8706-8736, June.
    9. Janice Boucher Breuer & John McDermott, 2019. "Debt And Depression," Contemporary Economic Policy, Western Economic Association International, vol. 37(4), pages 714-730, October.
    10. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    11. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    12. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    13. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    14. Magdalena Osińska & Tadeusz Kufel & Marcin Błażejowski & Paweł Kufel, 2020. "Modeling mechanism of economic growth using threshold autoregression models," Empirical Economics, Springer, vol. 58(3), pages 1381-1430, March.
    15. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    16. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    17. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    18. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    19. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    20. repec:spo:wpmain:info:hdl:2441/3l2vounfl99nvqsr0k24sn3k5l is not listed on IDEAS
    21. Dias, Daniel A. & Richmond, Christine & Wright, Mark L.J., 2014. "The stock of external sovereign debt: Can we take the data at ‘face value’?," Journal of International Economics, Elsevier, vol. 94(1), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:51:y:2022:i:3:p:963-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.