IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v39y2010i2p127-156.html
   My bibliography  Save this article

Model Identification and Computer Algebra

Author

Listed:
  • Kenneth A. Bollen

    (University of North Carolina, Chapel Hill, NC, USA, bollen@unc.edu)

  • Shawn Bauldry

    (University of North Carolina, Chapel Hill, NC, USA)

Abstract

Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice, analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this article, the authors outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. They demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. The authors illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. They present an identification procedure for structural equation models that makes use of CAS and that is a useful complement to current methods.

Suggested Citation

  • Kenneth A. Bollen & Shawn Bauldry, 2010. "Model Identification and Computer Algebra," Sociological Methods & Research, , vol. 39(2), pages 127-156, November.
  • Handle: RePEc:sae:somere:v:39:y:2010:i:2:p:127-156
    DOI: 10.1177/0049124110366238
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124110366238
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124110366238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    2. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Halkos & Kyriaki Tsilika, 2015. "Programming Identification Criteria in Simultaneous Equation Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 157-170, June.
    2. Halkos, George & Tsilika, Kyriaki, 2016. "Measures of correlation and computer algebra," MPRA Paper 70200, University Library of Munich, Germany.
    3. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2018. "CFA Models with a General Factor and Multiple Sets of Secondary Factors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 785-808, December.
    4. George E. Halkos & Kyriaki D. Tsilika, 2018. "Programming Correlation Criteria with free CAS Software," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 299-311, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    4. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    5. Yasuo Nishiyama, 2006. "The Asian Financial Crisis and Investors’ Risk Aversion," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 181-205, September.
    6. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    7. Anikó Bíró, 2013. "Subjective mortality hazard shocks and the adjustment of consumption expenditures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(4), pages 1379-1408, October.
    8. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    9. Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Giuseppe Croce & Emanuela Ghignoni, 2011. "Overeducation and spatial flexibility in Italian local labour markets," Working Papers in Public Economics 145, University of Rome La Sapienza, Department of Economics and Law.
    11. Chasco, Coro & López, Ana María & Guillain, Rachel, 2008. "The non-stationary influence of geography on the spatial agglomeration of production in the EU," MPRA Paper 10737, University Library of Munich, Germany.
    12. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    13. Darrian Collins & Clem Tisdell, 2004. "Outbound Business Travel Depends on Business Returns: Australian Evidence," Australian Economic Papers, Wiley Blackwell, vol. 43(2), pages 192-207, June.
    14. Caginalp, Gunduz & DeSantis, Mark, 2017. "Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 436-452.
    15. Jongeneel, Roelof A. & Ge, Lan, 2005. "Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24573, European Association of Agricultural Economists.
    16. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    17. PAUL CASHIN & C. JOHN McDERMOTT, 1998. "Are Australia's Current Account Deficits Excessive?," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 346-361, December.
    18. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    19. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    20. Rao, Surekha & Ghali, Moheb & Krieg, John, 2008. "On the J-test for nonnested hypotheses and Bayesian extension," MPRA Paper 14637, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:39:y:2010:i:2:p:127-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.