IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v39y2010i1p56-82.html
   My bibliography  Save this article

Cross-Survey Analysis to Estimate Low-Incidence Religious Groups

Author

Listed:
  • Elizabeth Tighe

    (Brandeis University, Waltham, MA, USA, tighe@brandeis.edu)

  • David Livert

    (Pennsylvania State University, Lehigh Valley, Center Valley, USA)

  • Melissa Barnett

    (Brandeis University, Waltham, MA, USA)

  • Leonard Saxe

    (Brandeis University, Waltham, MA, USA)

Abstract

Population-based surveys are of limited utility to estimate rare or low-incidence groups, particularly for those defined by religion or ethnicity not included in the U.S. Census. Methods of cross-survey analysis and small area estimation, however, can be used to provide reliable estimates of such low-incidence groups. To illustrate these methods, data from 50 national surveys are combined to examine the Jewish population in the United States. Hierarchical models are used to examine clustering of respondents within surveys and geographic regions. Bayesian analyses with Monte Carlo simulations are used to obtain pooled, state-level estimates poststratified by sex, race, education, and age to obtain certainty intervals about the estimates. This cross-survey approach provides a useful and practical analytic framework that can be generalized both to more extensive study of religion in the United States and to other social science problems in which single data sources are insufficient for reliable statistical inference.

Suggested Citation

  • Elizabeth Tighe & David Livert & Melissa Barnett & Leonard Saxe, 2010. "Cross-Survey Analysis to Estimate Low-Incidence Religious Groups," Sociological Methods & Research, , vol. 39(1), pages 56-82, August.
  • Handle: RePEc:sae:somere:v:39:y:2010:i:1:p:56-82
    DOI: 10.1177/0049124110366237
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124110366237
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124110366237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klaus Larsen & Jørgen Holm Petersen & Esben Budtz-Jørgensen & Lars Endahl, 2000. "Interpreting Parameters in the Logistic Regression Model with Random Effects," Biometrics, The International Biometric Society, vol. 56(3), pages 909-914, September.
    2. Zheng, Tian & Salganik, Matthew J. & Gelman, Andrew, 2006. "How Many People Do You Know in Prison?: Using Overdispersion in Count Data to Estimate Social Structure in Networks," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 409-423, June.
    3. Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    3. Kobayashi, Yoshiharu & Heinrich, Tobias & Bryant, Kristin A., 2021. "Public support for development aid during the COVID-19 pandemic," World Development, Elsevier, vol. 138(C).
    4. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    5. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    6. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    8. Sulaimon T Adedokun & Victor T Adekanmbi & Olalekan A Uthman & Richard J Lilford, 2017. "Contextual factors associated with health care service utilization for children with acute childhood illnesses in Nigeria," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    9. Amy E. Wagler, 2014. "Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models," Journal of Educational and Behavioral Statistics, , vol. 39(3), pages 167-179, June.
    10. Diaz, Rafael E., 2007. "Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomised trials," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2871-2888, March.
    11. Jonathan Gellar & Sarah Hughes & Constance Delannoy & Erin Lipman & Shirley Jeoffreys-Leach & Bobby Berkowitz & Grant J. Robertson, "undated". "Calibrated Multilevel Regression with Poststratifiction for the Analysis of SMS Survey Data," Mathematica Policy Research Reports c71d456bbf9f4026988e1a810, Mathematica Policy Research.
    12. Maurizio Pisati & Valeria Glorioso, 2011. "Multilevel Regression and Poststratification in Stata," CHI11 Stata Conference 4, Stata Users Group.
    13. Mariangela Sciandra & Vito Muggeo & Gianfranco Lovison, 2008. "Subject-specific odds ratios in binomial GLMMs with continuous response," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 309-320, July.
    14. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    15. Facchini, Giovanni & Hatton, Timothy J. & Steinhardt, Max F., 2024. "Opening Heaven’s Door: Public Opinion and Congressional Votes on the 1965 Immigration Act," The Journal of Economic History, Cambridge University Press, vol. 84(1), pages 232-270, March.
    16. Elizabeth Ayers & Sophia Rabe-Hesketh & Rebecca Nugent, 2013. "Incorporating Student Covariates in Cognitive Diagnosis Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 195-224, July.
    17. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    18. Elizabeth Sully & Margaret Giorgio & Selena Anjur-Dietrich, 2020. "Estimating abortion incidence using the network scale-up method," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(56), pages 1651-1684.
    19. Feehan, Dennis & Son, Vo Hai & Abdul-Quader, Abu, 2021. "Survey methods for estimating the size of weak-tie personal networks," SocArXiv z2t4p, Center for Open Science.
    20. Sundquist, Jan & Johansson, Sven-Erik & Yang, Min & Sundquist, Kristina, 2006. "Low linking social capital as a predictor of coronary heart disease in Sweden: A cohort study of 2.8 million people," Social Science & Medicine, Elsevier, vol. 62(4), pages 954-963, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:39:y:2010:i:1:p:56-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.