IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v33y2004i2p188-229.html
   My bibliography  Save this article

AIC and BIC

Author

Listed:
  • Jouni Kuha

    (London School of Economics)

Abstract

The two most commonly used penalized model selection criteria, the Bayesian information criterion (BIC) and Akaike’s information criterion (AIC), are examined and compared. Their motivations as approximations of two different target quantities are discussed, and their performance in estimating those quantities is assessed. Despite their different foundations, some similarities between the two statistics can be observed, for example, in analogous interpretations of their penalty terms. The behavior of the criteria in selecting good models for observed data is examined with simulated data and also illustrated with the analysis of two well-known data sets on social mobility. It is argued that useful information for model selection can be obtained from using AIC and BIC together, particularly from trying as far as possible to find models favored by both criteria.

Suggested Citation

  • Jouni Kuha, 2004. "AIC and BIC," Sociological Methods & Research, , vol. 33(2), pages 188-229, November.
  • Handle: RePEc:sae:somere:v:33:y:2004:i:2:p:188-229
    DOI: 10.1177/0049124103262065
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124103262065
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124103262065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. D. Cox & M. Bayarri & M. Bayarri & C. Cuadras & Jośe Bernadro & F. Girón & E. Moreno & N. Keiding & D. Lindley & L. Pericchi & L. Piccinato & N. Reid & N. Wermuth, 1995. "The relation between theory and application in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 207-261, December.
    3. Atkinson, A. C., 1981. "Likelihood ratios, posterior odds and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 15-20, May.
    4. Chow, Gregory C., 1981. "A comparison of the information and posterior probability criteria for model selection," Journal of Econometrics, Elsevier, vol. 16(1), pages 21-33, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Menezes & Sonia Bentes, 2016. "Hysteresis and Duration Dependence of Financial Crises in the US: Evidence from 1871-2016," Papers 1610.00259, arXiv.org.
    2. El-Shagi, Makram, 2009. "Inflation Expectations: Does the Market Beat Professional Forecasts?," IWH Discussion Papers 16/2009, Halle Institute for Economic Research (IWH).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    2. Luc Anselin, 1988. "Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches," International Regional Science Review, , vol. 11(3), pages 279-316, December.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    5. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    6. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    7. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    8. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    11. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    12. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    13. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    14. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    15. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    16. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    17. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    18. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    19. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    20. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:33:y:2004:i:2:p:188-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.