IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v26y1997i2p183-212.html
   My bibliography  Save this article

Application of Association-Marginal Models to the Study of Social Mobility

Author

Listed:
  • JOSEPH B. LANG

    (University of Iowa)

  • SCOTT R. ELIASON

    (University of Iowa)

Abstract

Researchers studying social mobility are often interested in examining both the association between origins and destinations and the relationship between the marginal distributions of origins and destinations. Often, this has resulted in an attempt to partition various models into components of, or derive indexes for, exchange/circulation mobility and structural mobility. As an alternative, or perhaps supplement, to such concerns, here the authors present a relatively simple but useful way to directly and simultaneously model the association between origins and destinations on one hand and, on the other hand, the relationship between origin and destination marginal distributions.

Suggested Citation

  • Joseph B. Lang & Scott R. Eliason, 1997. "Application of Association-Marginal Models to the Study of Social Mobility," Sociological Methods & Research, , vol. 26(2), pages 183-212, November.
  • Handle: RePEc:sae:somere:v:26:y:1997:i:2:p:183-212
    DOI: 10.1177/0049124197026002003
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124197026002003
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124197026002003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    2. Cecile C. Balagtas & Mark P. Becker & Joseph B. Lang, 1995. "Marginal Modelling of Categorical Data from Crossover Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 63-77, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    2. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    3. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    4. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    5. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    6. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    8. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Keon Lee, Seong, 2005. "On generalized multivariate decision tree by using GEE," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1105-1119, June.
    11. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    12. Ivy Jansen & Geert Molenberghs, 2008. "A flexible marginal modelling strategy for non‐monotone missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 347-373, April.
    13. Miranda, Alfonso & Trivedi, Pravin K., 2020. "Econometric Models of Fertility," IZA Discussion Papers 13357, Institute of Labor Economics (IZA).
    14. Lesaffre, Emmanuel & Molenberghs, Geert & Scheys, Ilse, 1997. "Prediction and classification when the diagnostic classes are related," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 67-90, July.
    15. Dittrich, Regina & Francis, Brian & Hatzinger, Reinhold & Katzenbeisser, Walter, 2006. "Modelling dependency in multivariate paired comparisons: A log-linear approach," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 197-209, September.
    16. Molenberghs, Geert & Kenward, Michael G., 2010. "Semi-parametric marginal models for hierarchical data and their corresponding full models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 585-597, February.
    17. Zhang, Heping, 2004. "Recursive Partitioning and Tree-based Methods," Papers 2004,30, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    18. Beunckens, Caroline & Sotto, Cristina & Molenberghs, Geert, 2008. "A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1533-1548, January.
    19. Lovison, Gianfranco, 2006. "A matrix-valued Bernoulli distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1573-1585, August.
    20. Hailemichael M. Worku & Mark De Rooij, 2017. "Properties of Ideal Point Classification Models for Bivariate Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 308-328, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:26:y:1997:i:2:p:183-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.