IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v19y1990i1p122-143.html
   My bibliography  Save this article

Peer Group Influence

Author

Listed:
  • NOAH E. FRIEDKIN

    (University of California, Santa Barbara)

  • KAREN S. COOK

    (University of Washington)

Abstract

This article evaluates three models of peer group influence on opinions. Two of these models are eliminated on theoretical and empirical grounds. The surviving model is consistent with the seminal work of French (1956) on social influence processes and provides theoretical foundations for the convention of measuring interpersonal effects with the mean opinion of an individual's set of peers. The model clearly points out the danger of reifying the mean of peers' opinions. Whether or not there is a group norm, the mean of peers' opinions must be viewed strictly as an analytical construction that may be employed to estimate the magnitude of pressures toward uniformity in a peer group.

Suggested Citation

  • Noah E. Friedkin & Karen S. Cook, 1990. "Peer Group Influence," Sociological Methods & Research, , vol. 19(1), pages 122-143, August.
  • Handle: RePEc:sae:somere:v:19:y:1990:i:1:p:122-143
    DOI: 10.1177/0049124190019001006
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124190019001006
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124190019001006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lovrić, Marko & Lovrić, Nataša & Schraml, Ulrich, 2019. "Modeling policy networks: The case of Natura 2000 in Croatian forestry," Forest Policy and Economics, Elsevier, vol. 103(C), pages 90-102.
    2. Maurits C. de Klepper & Giuseppe (Joe) Labianca & Ed Sleebos & Filip Agneessens, 2017. "Sociometric Status and Peer Control Attempts: A Multiple Status Hierarchies Approach," Journal of Management Studies, Wiley Blackwell, vol. 54(1), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    2. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    3. D’Errico, Marco & Battiston, Stefano & Peltonen, Tuomas & Scheicher, Martin, 2018. "How does risk flow in the credit default swap market?," Journal of Financial Stability, Elsevier, vol. 35(C), pages 53-74.
    4. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.
    5. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.
    6. Gabrielle Demange, 2018. "Contagion in Financial Networks: A Threat Index," Management Science, INFORMS, vol. 64(2), pages 955-970, February.
    7. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    9. Zhepeng Li & Xiao Fang & Xue Bai & Olivia R. Liu Sheng, 2017. "Utility-Based Link Recommendation for Online Social Networks," Management Science, INFORMS, vol. 63(6), pages 1938-1952, June.
    10. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    11. Dequiedt, Vianney & Zenou, Yves, 2017. "Local and consistent centrality measures in parameterized networks," Mathematical Social Sciences, Elsevier, vol. 88(C), pages 28-36.
    12. Mauleon, Ana & Nanumyan, Mariam & Vannetelbosch, Vincent, 2024. "Ideal efforts and consensus in a multi-layer network game," LIDAM Discussion Papers CORE 2024023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. ,, 2014. "A ranking method based on handicaps," Theoretical Economics, Econometric Society, vol. 9(3), September.
    14. Celani, Alessandro & Cerchiello, Paola & Pagnottoni, Paolo, 2024. "The topological structure of panel variance decomposition networks," Journal of Financial Stability, Elsevier, vol. 71(C).
    15. Ernest Liu & Aleh Tsyvinski, 2021. "Dynamical Structure and Spectral Properties of Input-Output Networks," Working Papers 2021-13, Princeton University. Economics Department..
    16. Richard W. Carney & Travers Barclay Child, 2015. "Business Networks and Crisis Performance: Professional, Political, and Family Ties," Tinbergen Institute Discussion Papers 15-135/V, Tinbergen Institute, revised 20 Feb 2015.
    17. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    18. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    19. Michel Grabisch & Agnieszka Rusinowska, 2015. "Lattices in Social Networks with Influence," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-18.
    20. Bouveret, Géraldine & Mandel, Antoine, 2021. "Social interactions and the prophylaxis of SI epidemics on networks," Journal of Mathematical Economics, Elsevier, vol. 93(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:19:y:1990:i:1:p:122-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.