Least Squared Simulated Errors
Author
Abstract
Suggested Citation
DOI: 10.1177/2158244015575555
Download full text from publisher
References listed on IDEAS
- McFadden, Daniel, 1989.
"A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration,"
Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
- Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
- Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521766555.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
- Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
- McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
- Steven Stern, 1997. "Simulation-Based Estimation," Journal of Economic Literature, American Economic Association, vol. 35(4), pages 2006-2039, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heiss, Florian & Winschel, Viktor, 2006. "Estimation with Numerical Integration on Sparse Grids," Discussion Papers in Economics 916, University of Munich, Department of Economics.
- Victor Aguirregabiria & Arvind Magesan, 2013.
"Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models,"
Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 3-44,
Emerald Group Publishing Limited.
- Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Working Papers tecipa-489, University of Toronto, Department of Economics.
- Aguirregabiria, Victor & Magesan, Arvind, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural," MPRA Paper 46056, University Library of Munich, Germany.
- Maruyama, Shiko, 2014.
"Estimation of finite sequential games,"
Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
- Shiko Maruyama, 2010. "Estimation of Finite Sequential Games," Discussion Papers 2010-22, School of Economics, The University of New South Wales.
- Peter Haan, 2005. "State Dependence and Female Labor Supply in Germany: The Extensive and the Intensive Margin," Discussion Papers of DIW Berlin 538, DIW Berlin, German Institute for Economic Research.
- Lee, Lung-Fei, 1997.
"Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results,"
Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
- Lee, L.F., 1994. "Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models--Some Monte Carlo Results," Papers 94-06, Michigan - Center for Research on Economic & Social Theory.
- Daniel Ackerberg, 2009.
"A new use of importance sampling to reduce computational burden in simulation estimation,"
Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
- Daniel A. Ackerberg, 2001. "A New Use of Importance Sampling to Reduce Computational Burden in Simulation Estimation," NBER Technical Working Papers 0273, National Bureau of Economic Research, Inc.
- Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
- Mesa-Arango, Rodrigo & Ukkusuri, Satish V., 2014. "Attributes driving the selection of trucking services and the quantification of the shipper’s willingness to pay," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 142-158.
- Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020.
"The order of variables, simulation noise, and accuracy of mixed logit estimates,"
Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
- Palma, Marco & Li, Yajuan & Vedenov, Dmitry & Bessler, David, 2016. "The Order of Variables, Simulation Noise and Accuracy of Mixed Logit Estimates," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235990, Agricultural and Applied Economics Association.
- Inkmann, Joachim, 2000.
"Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators,"
Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
- Inkmann, Joachim, 1999. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," CoFE Discussion Papers 99/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Joachim Inkmann, 1999. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Finance 9904003, University Library of Munich, Germany.
- Islam, Mouyid, 2015. "Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(1).
- Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
- Mohammed H. Alemu & Søren B. Olsen, 2017. "Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments? An application to consumer valuation of novel food products," IFRO Working Paper 2017/05, University of Copenhagen, Department of Food and Resource Economics.
- Sándor, Zsolt & Train, Kenneth, 2004.
"Quasi-random simulation of discrete choice models,"
Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
- Sándor, Z. & Train, K., 2004. "Quasi-random simulation of discrete choice models," Econometric Institute Research Papers EI 2004-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Anna Conte & Peter G Moffatt & Mary Riddel, 2019. "The Multivariate Random Preference Estimatorfor Switching Multiple Price List Data," University of East Anglia School of Economics Working Paper Series 2019-04, School of Economics, University of East Anglia, Norwich, UK..
- de Lapparent, M., & Axhausen , K.W. & Frei, A., 2013. "Long distance mode choice and distributions of values of travel time savings in three European countries," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
- Andrén, Daniela & Andrén, Thomas, 2013.
"State dependence in Swedish social assistance,"
Working Papers
2013:7, Örebro University, School of Business.
- Thomas Andrén & Daniela Andrén, 2013. "State dependence in Swedish social assistance," Discussion Papers 19, Central European Labour Studies Institute (CELSI).
- Lee, Donghoon & Song, Kyungchul, 2015. "Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies," Journal of Econometrics, Elsevier, vol. 187(1), pages 131-153.
- Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
More about this item
Keywords
least squares analysis; nonlinear regression; Monte Carlo methods; simulation experiments;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:5:y:2015:i:1:p:2158244015575555. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.