IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v14y2024i2p21582440241242188.html
   My bibliography  Save this article

Development and Validation of the Artificial Intelligence Learning Intention Scale (AILIS) for University Students

Author

Listed:
  • Ching Sing Chai
  • Ding Yu
  • Ronnel B. King
  • Ying Zhou

Abstract

As artificial intelligence (AI) permeates almost all aspects of our lives, university students need to acquire relevant knowledge, skills, and attitudes to adapt to the challenges it poses. This study reports the development and validation of a scale called the Artificial Intelligence Learning Intention Scale (AILIS). AILIS was designed to measure the different factors that shape university students’ behavioral intentions to learn about AI and their AI learning. We recruited 907 Chinese university students who answered the survey. The scale is comprised of 9 factors that are categorized into various dimensions pertaining to epistemic capacity (AI basic knowledge, programming efficacy, designing AI for social good), facilitating environments (actual use of AI systems, subjective norms, access to support and technology), psychological attitudes (resilience, optimism, personal relevance), and focal outcomes (behavioral intention to learn AI, actual learning of AI). Reliability analyses and confirmatory factor analyses indicated that the scale has acceptable reliability and construct validity. Structural equational modeling results demonstrated the critical role played by epistemic capacity, facilitating environments, and psychological attitudes in promoting students’ behavioral intentions and actual learning of AI. Overall, the findings revealed that university students express a strong intention to learn about AI, and this behavioral intention is positively associated with actual learning. The study contextualizes the theory of planned behavior for university AI education, provides guidelines on the design of AI curriculum courses, and proposes a possible tool to evaluate university AI curriculum.

Suggested Citation

  • Ching Sing Chai & Ding Yu & Ronnel B. King & Ying Zhou, 2024. "Development and Validation of the Artificial Intelligence Learning Intention Scale (AILIS) for University Students," SAGE Open, , vol. 14(2), pages 21582440241, April.
  • Handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241242188
    DOI: 10.1177/21582440241242188
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440241242188
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440241242188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241242188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.