IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v14y2024i2p21582440241241981.html
   My bibliography  Save this article

Probabilistic Graph Model Based Recommendation Algorithm for Material Selection in Self-directed Learning

Author

Listed:
  • Zhiyong Qiu
  • Yingjin Cui

Abstract

Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm is a kind of intelligent technology that can accurately locate the required information which the users care about most. However, many recommendation techniques experience can not be trained adequately in scenarios with small sample data and extremely sparse ratings. Moreover, DLRAs (Deep learning based Recommendation Algorithms) require high hardware support. The probabilistic graph (PG) can effectively represent the implicit complex relations among nodes, but it still has the problem of sparse data sensitivity. Therefore, we propose a Matrix-Factorization-based Probabilistic Graph Model for Recommendation Algorithm (MF-PGMRA): By matrix-factorizing the sparse rating matrix, the users and items are mapped to the user/item spaces, respectively; We employ the inner product to data-enhance and overcome the problems of sparse data and cold start; Then, we build Probabilistic Graph to construct the “user-item†latent spaces and estimate the probability distribution based on expectation maximization (EM), so as to predict the ratings; Finally, we built a library management system with the recommendation module to highlight the benefits of MF-PGMRA for students’ subject learning. According to a questionnaire, we confirmed that the students are satisfied with the system from four aspects of speed, accuracy, usability and convenience, which can confirm that the library management system based on MF-PGMRA can efficiently and accurately recommend suitable materials for students from the huge amount of learning materials to improve students’ self-directed learning efficiency.

Suggested Citation

  • Zhiyong Qiu & Yingjin Cui, 2024. "Probabilistic Graph Model Based Recommendation Algorithm for Material Selection in Self-directed Learning," SAGE Open, , vol. 14(2), pages 21582440241, April.
  • Handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241241981
    DOI: 10.1177/21582440241241981
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440241241981
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440241241981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241241981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.