IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v14y2024i1p21582440231177042.html
   My bibliography  Save this article

Data and Knowledge Organization for Natural Language Processing: Searching and Identifying Better Arrangements of Texts Based on Multimodal Information Architecture

Author

Listed:
  • George Hideyuki Kuroki Júnior
  • Cláudio Gottschalg-Duque

Abstract

Processing texts of multiple knowledge areas is a hard task. This article presents an Information Science contribution to natural language processing based on artificial neural networks through data arrangement. An extended concept of Information architecture was used, aggregating a multimodal view of organizing data. The Multimodal Information Architecture definition served as foundations for a five-step procedure to design, analyze and transform data used for artificial neural networks training and learning methods, complementing gaps identified by authors focused on Computer Science implementations. The proposal was validated with three datasets formed by texts coming from 16 knowledge areas. Results obtained through the usage of pre-processed data and raw data where compared. In each of the three datasets, the method identified arrangements which led to better and worst results, separating which corpus samples are more susceptible for knowledge extraction.

Suggested Citation

  • George Hideyuki Kuroki Júnior & Cláudio Gottschalg-Duque, 2024. "Data and Knowledge Organization for Natural Language Processing: Searching and Identifying Better Arrangements of Texts Based on Multimodal Information Architecture," SAGE Open, , vol. 14(1), pages 21582440231, March.
  • Handle: RePEc:sae:sagope:v:14:y:2024:i:1:p:21582440231177042
    DOI: 10.1177/21582440231177042
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440231177042
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440231177042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kar, Arpan Kumar & Dwivedi, Yogesh K., 2020. "Theory building with big data-driven research – Moving away from the “What” towards the “Why”," International Journal of Information Management, Elsevier, vol. 54(C).
    2. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    3. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    4. Chiehyeon Lim & Paul P. Maglio, 2018. "Data-Driven Understanding of Smart Service Systems Through Text Mining," Service Science, INFORMS, vol. 10(2), pages 154-180, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    2. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    3. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    4. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    5. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    6. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
    7. Matthias Breuer & David Windisch, 2019. "Investment Dynamics and Earnings‐Return Properties: A Structural Approach," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 639-674, June.
    8. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    9. Michael J. Pennock & William B. Rouse & Diane L. Kollar, 2007. "Transforming the Acquisition Enterprise: A Framework for Analysis and a Case Study of Ship Acquisition," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 99-117, June.
    10. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    11. Sasanka Adikari & Norou Diawara, 2024. "Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data," Stats, MDPI, vol. 7(1), pages 1-18, February.
    12. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    14. Vincent Huang & James Unwin, 2019. "Markov Chain Models of Refugee Migration Data," Papers 1903.08255, arXiv.org.
    15. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    16. Alex Sharp & Ryan Browne, 2021. "Functional data clustering by projection into latent generalized hyperbolic subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 735-757, September.
    17. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    18. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    19. Yann Disser & John Fearnley & Martin Gairing & Oliver Göbel & Max Klimm & Daniel Schmand & Alexander Skopalik & Andreas Tönnis, 2020. "Hiring Secretaries over Time: The Benefit of Concurrent Employment," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 323-352, February.
    20. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:1:p:21582440231177042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.