IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p797-811.html
   My bibliography  Save this article

Reliability analysis of complex multi-state system based on universal generating function and Bayesian Network

Author

Listed:
  • Xu Liu
  • Wen Yao
  • Xiaohu Zheng
  • Yingchun Xu
  • Xiaoqian Chen

Abstract

In the complex multi-state system (MSS), reliability analysis is an important research content, both for equipment design, manufacturing, operation and maintenance. Universal Generating Function (UGF) is an essential method in reliability analysis, which efficiently obtains system reliability by a fast algebraic procedure. However, when structural relationships between subsystems or components are unclear or without explicit expressions, the UGF method is difficult to use or not applicable at all. Bayesian Network (BN) has a natural advantage in terms of reliability inference for the relationship without explicit expressions. When the number of components is extremely large, though, it has the defects of low efficiency. To overcome the respective shortcomings of UGF and BN, a novel reliability analysis method called UGF-BN is proposed for the complex MSS. In the UGF-BN framework, the UGF method is first used to analyze the bottom components with a large number. Then probability distributions obtained are taken as the input of BN. Finally, the reliability of the complex MSS is modeled by the BN method. This proposed method improves the computational efficiency, especially for the MSS with a large number of bottom components. Besides, the aircraft reliability-based design optimization based on the UGF-BN method is further studied with budget constraints on mass, power, and cost. Finally, two cases are used to demonstrate and verify the proposed method.

Suggested Citation

  • Xu Liu & Wen Yao & Xiaohu Zheng & Yingchun Xu & Xiaoqian Chen, 2024. "Reliability analysis of complex multi-state system based on universal generating function and Bayesian Network," Journal of Risk and Reliability, , vol. 238(4), pages 797-811, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:797-811
    DOI: 10.1177/1748006X231173301
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231173301
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231173301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    2. A. N. Patowary & J. Hazarika & G. L. Sriwastav, 2018. "Reliability estimation of multi-component cascade system through Monte-Carlo simulation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1279-1286, December.
    3. Babaei, Mohsen & Rashidi-baqhi, Amin, 2022. "Universal generating function -based narrow reliability bounds to evaluate reliability of project completion time," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiqiang Liu & Wenbo Zhu & Hongzhou Zhang & Shengjin Wang & Lu Fang & Weijun Hong & Hua Shao & Guopeng Wang, 2020. "Reliability evaluation of dynamic face recognition systems based on improved Fuzzy Dynamic Bayesian Network," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
    2. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Xia, Weifu & Wang, Yanhui & Hao, Yucheng & He, Zhichao & Yan, Kai & Zhao, Fan, 2024. "Reliability analysis for complex electromechanical multi-state systems utilizing universal generating function techniques," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Xu, Yingchun & Yao, Wen & Zheng, Xiaohu & Chen, Xiaoqian, 2020. "An iterative information integration method for multi-level system reliability analysis based on Bayesian Melding Method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2021. "Resilient communication model for satellite networks using clustering technique," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Damircheli, Mahrad & Fakoor, Mahdi & Yadegari, Hamed, 2020. "Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xiaoqian, 2020. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    13. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Chen, Zhiwei & Zhang, Hao & Wang, Xinyue & Yang, Jinling & Dui, Hongyan, 2024. "Reliability analysis and redundancy design of satellite communication system based on a novel Bayesian environmental importance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:797-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.