IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i3p643-653.html
   My bibliography  Save this article

Accuracy reliability analysis of CNC machine tools considering manufacturing errors degrees

Author

Listed:
  • Yangfan Li
  • Yingjie Zhang
  • Ning An

Abstract

To evaluate the accuracy reliability of machine tools, an evaluation method of accuracy reliability considering the machining error out of tolerance is proposed, and an accurate mathematical description is given to realize the quantitative evaluation of machining accuracy under different machining loads. On this basis, the basic connotation and mathematical model of accuracy retention are analyzed, and the influence of different machining loads on the accuracy retention is studied. Finally, experiments are carried out to detect the variations of machining errors of machine tools under different loads and the quantitative evaluations of accuracy reliability and retention of machine tools are completed, which verify the validity of the proposed methods.

Suggested Citation

  • Yangfan Li & Yingjie Zhang & Ning An, 2024. "Accuracy reliability analysis of CNC machine tools considering manufacturing errors degrees," Journal of Risk and Reliability, , vol. 238(3), pages 643-653, June.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:3:p:643-653
    DOI: 10.1177/1748006X231153704
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231153704
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231153704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yangfan Li & Yingjie Zhang & Bochao Dai & Lin Zhang, 2018. "Dynamic Importance Analysis of Components with Known Failure Contribution of Complex Systems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, April.
    2. Kumar, Pankaj & Jain, Madhu, 2020. "Reliability analysis of a multi-component machining system with service interruption, imperfect coverage, and reboot," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Xinlong Li & Yan Ran & Fangming Wan & Hui Yu & Genbao Zhang & Yan He, 2022. "Condition-based maintenance strategy optimization of meta-action unit considering imperfect preventive maintenance based on Wiener process," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 204-233, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis D. Paraschos & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2024. "A reinforcement learning/ad-hoc planning and scheduling mechanism for flexible and sustainable manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 714-736, September.
    2. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    4. Parveen Kumari & M. S. Kadyan & Jitender Kumar, 2021. "Performance analysis of curd (Dahi) producing system of milk plant by using trapezoidal fuzzy numbers with different left and right heights," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1348-1361, December.
    5. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Gao, Shan & Wang, Jinting & Zhang, Jie, 2023. "Reliability analysis of a redundant series system with common cause failures and delayed vacation," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Subhi Tyagi & Nupur Goyal & Akshay Kumar & Mangey Ram, 2022. "Stochastic hybrid energy system modelling with component failure and repair," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 842-852, June.
    10. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:3:p:643-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.