IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i3d10.1007_s10463-018-0658-9.html
   My bibliography  Save this article

Semiparametric generalized exponential frailty model for clustered survival data

Author

Listed:
  • Wagner Barreto-Souza

    (Universidade Federal de Minas Gerais)

  • Vinícius Diniz Mayrink

    (Universidade Federal de Minas Gerais)

Abstract

In this paper, we propose a novel and mathematically tractable frailty model for clustered survival data by assuming a generalized exponential (GE) distribution for the latent frailty effect. Both parametric and semiparametric versions of the GE frailty model are studied with main focus for the semiparametric case, where an EM-algorithm is proposed. Our EM-based estimation for the GE frailty model is simpler, faster and immune to a flat likelihood issue affecting, for example, the semiparametric gamma model, as illustrated in this paper through simulated and real data. We also show that the GE model is at least competitive with respect to the gamma frailty model under misspecification. A broad analysis is developed, with simulation results explored via Monte Carlo replications, to evaluate and compare models. A real application using a clustered kidney catheter data is considered to demonstrate the potential for practice of the GE frailty model.

Suggested Citation

  • Wagner Barreto-Souza & Vinícius Diniz Mayrink, 2019. "Semiparametric generalized exponential frailty model for clustered survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 679-701, June.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:3:d:10.1007_s10463-018-0658-9
    DOI: 10.1007/s10463-018-0658-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0658-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0658-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cetinyurek, Aysun & Lambert, Philippe, 2016. "Semi-parametric frailty model for clustered interval-censored data," LIDAM Reprints ISBA 2016032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Yu, Binbing, 2006. "Estimation of shared Gamma frailty models by a modified EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 463-474, January.
    3. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    4. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    5. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingvild M. Helgøy & Hans J. Skaug, 2022. "The Sibling Distribution for Multivariate Life Time Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 340-363, May.
    2. Luiza S. C. Piancastelli & Wagner Barreto-Souza & Vinícius D. Mayrink, 2021. "Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 979-1010, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    2. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    3. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    4. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    5. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    6. Kenneth Harttgen & Stefan Lang & Johannes Seiler, 2017. "Selective mortality and undernutrition in low- and middle-income countries," Working Papers 2017-27, Faculty of Economics and Statistics, Universität Innsbruck, revised Aug 2018.
    7. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    8. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Chen, Pengcheng & Zhang, Jiajia & Zhang, Riquan, 2013. "Estimation of the accelerated failure time frailty model under generalized gamma frailty," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 171-180.
    10. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    11. Harttgen, Kenneth & Lang, Stefan & Seiler, Johannes, 2019. "Selective mortality and the anthropometric status of children in low- and middle-income countries," Economics & Human Biology, Elsevier, vol. 34(C), pages 257-273.
    12. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    13. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    14. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    15. M. K. Lintu & Asha Kamath, 2022. "Performance of recurrent event models on defect proneness data," Annals of Operations Research, Springer, vol. 315(2), pages 2209-2218, August.
    16. Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
    17. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    19. Svetlana V. Ukraintseva & Anatoli I. Yashin, 2005. "Economic progress as cancer risk factor. I: Puzzling facts of cancer epidemiology," MPIDR Working Papers WP-2005-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    20. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:3:d:10.1007_s10463-018-0658-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.