IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i1p48-57.html
   My bibliography  Save this article

Mining of inland water traffic accident data using a biclustering algorithm: A case study of the Yangtze River

Author

Listed:
  • Chen Chen
  • Qing Wu
  • Song Gao

Abstract

Analysis of maritime accident data is important for improving safety management. Clustering is the favoured method of mining marine accident data. However, traditional one-way clustering methods are limited by their focus on global patterns, which does not account for the contingent characteristics of accidents. In this study, biclustering algorithms (BAs) typically used for gene expressions are introduced for analysis of inland water traffic accident data. BAs are good for discovering local patterns (LPs), which represent the similarities between partial accidents and partial attributes. LPs are the more likely modes in accident data, which are difficult to discern using who is traditional one-way clustering. During biclustering of original accident data, six LPs involving replicative accidents are uncovered, thereby suggesting a high risk in similar scenarios. With biclustering of accident attribute factors, the interrelationships among factors are discovered. According to the LPs explored using BAs, high-risk scenarios should gain the attention of shipping companies and safety management departments. Two recommendations are presented: raising awareness of the need for immediate accident reporting and disseminating rescue knowledge. After comparing their applications, the order-preserving submatrix (OPSM) and conserved gene expression motif (xMotifs) algorithms are regarded as the most suitable BAs for analysing maritime accident data.

Suggested Citation

  • Chen Chen & Qing Wu & Song Gao, 2019. "Mining of inland water traffic accident data using a biclustering algorithm: A case study of the Yangtze River," Journal of Risk and Reliability, , vol. 233(1), pages 48-57, February.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:1:p:48-57
    DOI: 10.1177/1748006X18770084
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18770084
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18770084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    3. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Vilko, Jyri P.P. & Hallikas, Jukka M., 2012. "Risk assessment in multimodal supply chains," International Journal of Production Economics, Elsevier, vol. 140(2), pages 586-595.
    6. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Montewka, Jakub & Hinz, Tomasz & Kujala, Pentti & Matusiak, Jerzy, 2010. "Probability modelling of vessel collisions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 573-589.
    8. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    9. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. J Montewka & P Krata & F Goerlandt & A Mazaheri & P Kujala, 2011. "Marine traffic risk modelling – an innovative approach and a case study," Journal of Risk and Reliability, , vol. 225(3), pages 307-322, September.
    11. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    12. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Ziyang Ye & Yanyi Chen & Tao Wang & Baiyuan Tang & Chengpeng Wan & Hao Zhang & Bozhong Zhou, 2024. "A Two-Stage Bayesian Network Approach to Inland Waterway Navigation Risk Assessment Considering the Characteristics of Different River Segments: A Case of the Yangtze River," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    14. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "Marine traffic model based on cellular automaton: Considering the change of the ship’s velocity under the influence of the weather and sea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 480-494.
    19. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:1:p:48-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.