IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8821-d1496892.html
   My bibliography  Save this article

A Two-Stage Bayesian Network Approach to Inland Waterway Navigation Risk Assessment Considering the Characteristics of Different River Segments: A Case of the Yangtze River

Author

Listed:
  • Ziyang Ye

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Yanyi Chen

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Tao Wang

    (Chongqing Maritime Safety Administration of the People’s Republic of China, Chongqing 401121, China)

  • Baiyuan Tang

    (Wuhu Maritime Safety Administration of the People’s Republic of China, Wuhu 241000, China)

  • Chengpeng Wan

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

  • Hao Zhang

    (School of Management, Wuhan University of Technology, Wuhan 430070, China)

  • Bozhong Zhou

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

Identifying the main sources of risk for different types of waterways helps to develop targeted risk control strategies for different river segments. To improve the level of risk management in inland waterways for sustainable development, a two-stage risk evaluation model is proposed in this study by integrating a fuzzy rule base and Bayesian networks. The model evaluates risk sources from the following four dimensions: probability of occurrence, visibility, probability of causing accidents, and consequences. Typical river sections in the upper, middle, and lower reaches of the Yangtze River were selected as cases, and 19 risk sources were identified and comparatively analyzed from the perspectives of humans, ships, the environment, and management. The fuzzy rule base is employed to compare expert opinions, yielding three key risk sources for each section based on their risk values. The findings reveal certain commonalities in the principal risk sources across sections. For example, natural disasters (landslides, earthquakes, and extreme hydrological conditions) are present in both the middle and lower reaches, and an insufficient channel width is common in the upper and middle reaches. However, the key risk sources differ among the sections. The upper reaches are primarily threatened by the improper management of affiliated vessels and adverse weather, while the middle reaches suffer from insufficient channel width surplus, and the lower reaches are mainly threatened by high vessel traffic density and low-quality crews. The results of the study show that the key risk sources in each section of the Yangtze River have obvious differences and need to be assessed according to the characteristics of different sections. This study can provide a reference for decision-making in inland waterway risk management by maritime safety authorities.

Suggested Citation

  • Ziyang Ye & Yanyi Chen & Tao Wang & Baiyuan Tang & Chengpeng Wan & Hao Zhang & Bozhong Zhou, 2024. "A Two-Stage Bayesian Network Approach to Inland Waterway Navigation Risk Assessment Considering the Characteristics of Different River Segments: A Case of the Yangtze River," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8821-:d:1496892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pristrom, Sascha & Yang, Zaili & Wang, Jin & Yan, Xinping, 2016. "A novel flexible model for piracy and robbery assessment of merchant ship operations," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 196-211.
    2. Zhaochen Wang & Jingbo Yin, 2020. "Risk assessment of inland waterborne transportation using data mining," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 633-648, July.
    3. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    4. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    5. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    6. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    4. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    10. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    14. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Valdez Banda, Osiris A. & Kannos, Sirpa & Goerlandt, Floris & van Gelder, Pieter H.A.J.M. & Bergström, Martin & Kujala, Pentti, 2019. "A systemic hazard analysis and management process for the concept design phase of an autonomous vessel," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8821-:d:1496892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.