IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i2p152-165.html
   My bibliography  Save this article

Single minimal path based backup path for multi-state network

Author

Listed:
  • Yun Zhang
  • Zhengguo Xu
  • Xinli Wang
  • Jiangang Lu
  • Youxian Sun

Abstract

Backup path is an important mechanism to sustain the reliability of a multi-state network. As a popular backup path method, the double minimal path based backup path algorithm can improve the multi-state network’s reliability when the main paths fail. However, this algorithm cannot work efficiently when a single main minimal path fails. To improve the reliability in the first main minimal path failure case, we propose a single minimal path based backup path algorithm. In the single minimal path based backup path algorithm, two disjoint minimal paths are used as the main routing pair to transmit the data, and one single minimal path, which is disjoint with the main minimal paths, acts as the backup path. In the second main minimal path failure case, we propose a double–single minimal path based backup path algorithm to improve the multi-state network reliability. To develop the single minimal path based backup path and the double–single minimal path based backup path algorithms, this article first formulates the multi-state network reliability analysis problem. Then, a solution procedure is proposed to calculate the multi-state network reliability. Furthermore, numerical examples are given to validate the effectiveness of the algorithms. Finally, some comparisons are made between the single minimal path based backup path/double–single minimal path based backup path and the double minimal path based backup path/double minimal path based backup path algorithms. The comparison results indicate that the single minimal path based backup path and the double–single minimal path based backup path algorithms lead to considerable improvement in terms of the multi-state network reliability in the first and the second main minimal path failure cases, respectively, which are verified by both the mathematical analysis and numerical experiments.

Suggested Citation

  • Yun Zhang & Zhengguo Xu & Xinli Wang & Jiangang Lu & Youxian Sun, 2014. "Single minimal path based backup path for multi-state network," Journal of Risk and Reliability, , vol. 228(2), pages 152-165, April.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:152-165
    DOI: 10.1177/1748006X13502953
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13502953
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13502953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 311-322.
    2. K Hausken & G Levitin, 2010. "Defence of homogeneous parallel multi-state systems subject to two sequential attacks," Journal of Risk and Reliability, , vol. 224(3), pages 171-183, September.
    3. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    4. Yeh, Wei-Chang, 2008. "A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 125-136.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    2. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    3. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    4. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    5. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    6. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    9. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    10. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    11. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    12. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    17. Hu, Bin & Seiler, Peter, 2015. "Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 130-141.
    18. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    19. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    20. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:152-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.