IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i4p477-494.html
   My bibliography  Save this article

Modelling and analysis of risk and reliability for a contingency logistics supply chain

Author

Listed:
  • M Miman
  • E Pohl

Abstract

Contingency logistic supply chain design and performance are very important for rare events such as natural disasters, terrorist attacks, and other emergency conditions. Although there is ample work on the evaluation of supply chain systems in terms of their profitability and efficiency, there is little work on the effectiveness of the response time of the supply chain, as well as quantitative measures for the robustness of the design and the reliability of the supply chain. Depending on the contingency, the perceived risk may be different for different situations. The level of risk aversion is dependent on the decision maker and the uncertainties associated with the supply and demand for the contingency. In this study the risk associated with shortages due to the uncertainties in supply and demand in the supply chain are modelled using distortion. In addition, a numerical analysis is performed and the sensitivity of the parameters in a contingency logistic supply chain is analysed. Methods to improve the effectiveness of the contingency operation are examined by efficiently allocating available resources, supplies, and time, as well as modelling the decision maker's perception associated with the failure of a particular node. An array of optimization models are formulated and discussed. Each of these models enables a decision maker to examine a variety of trade-offs in a contingency logistics supply chain. For example, one model examines the acquisition of mitigation strategies and the reallocation of resources while taking into consideration the decision maker's risk aversion. The main contribution of this paper is the establishment of an analysis framework for modelling and analysing the risk and reliability of contingency logistic supply chains.

Suggested Citation

  • M Miman & E Pohl, 2008. "Modelling and analysis of risk and reliability for a contingency logistics supply chain," Journal of Risk and Reliability, , vol. 222(4), pages 477-494, December.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:4:p:477-494
    DOI: 10.1243/1748006XJRR191
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR191
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ha, Chunghun & Kuo, Way, 2006. "Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 171(1), pages 24-38, May.
    2. Lawrence V. Snyder & Mark S. Daskin, 2007. "Models for Reliable Supply Chain Network Design," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 13, pages 257-289, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihai Zhang & Zhile Wang & Fan Ren, 2019. "Optimization of humanitarian relief supply chain reliability: a case study of the Ya’an earthquake," Annals of Operations Research, Springer, vol. 283(1), pages 1551-1572, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Xian Zhao & Jing Zhang & Xiaoyue Wang, 2019. "Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system," Journal of Risk and Reliability, , vol. 233(4), pages 623-638, August.
    3. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Seyed Mohsen Mousavi & Najmeh Alikar & Madjid Tavana & Debora Di Caprio, 2019. "An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1175-1194, March.
    5. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    6. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    7. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    8. Xu, Dong & Tian, Yubin & Shi, Junbiao & Wang, Dianpeng & Zhang, Ming & Li, Haijin, 2023. "Reliability analysis and optimal redundancy for a satellite power supply system based on a new dynamic k-out-of-n: G model," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    10. Marco Caserta & Stefan Voß, 2016. "A corridor method based hybrid algorithm for redundancy allocation," Journal of Heuristics, Springer, vol. 22(4), pages 405-429, August.
    11. Li, Yan-Fu & Zhang, Hanxiao, 2022. "The methods for exactly solving redundancy allocation optimization for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    13. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    14. Zaretalab, Arash & Hajipour, Vahid & Tavana, Madjid, 2020. "Redundancy allocation problem with multi-state component systems and reliable supplier selection," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Jabbarzadeh, Armin & Azad, Nader & Verma, Manish, 2020. "An optimization approach to planning rail hazmat shipments in the presence of random disruptions," Omega, Elsevier, vol. 96(C).
    16. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    18. Zheng, Rui & Shou, Biying & Yang, Jun, 2021. "Supply disruption management under consumer panic buying and social learning effects," Omega, Elsevier, vol. 101(C).
    19. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    20. Yun Hui Lin & Yuan Wang & Loo Hay Lee & Ek Peng Chew, 2021. "Robust facility location with structural complexity and demand uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 485-507, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:4:p:477-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.