IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v44y2024i7p787-801.html
   My bibliography  Save this article

Accurate EVSI Estimation for Nonlinear Models Using the Gaussian Approximation Method

Author

Listed:
  • Linke Li

    (Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
    Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
    Department of Statistical Science, University College London, London, UK)

  • Hawre Jalal

    (School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada)

  • Anna Heath

    (Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
    Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
    Department of Statistical Science, University College London, London, UK)

Abstract

Background The expected value of sample information (EVSI) measures the expected benefits that could be obtained by collecting additional data. Estimating EVSI using the traditional nested Monte Carlo method is computationally expensive, but the recently developed Gaussian approximation (GA) approach can efficiently estimate EVSI across different sample sizes. However, the conventional GA may result in biased EVSI estimates if the decision models are highly nonlinear. This bias may lead to suboptimal study designs when GA is used to optimize the value of different studies. Therefore, we extend the conventional GA approach to improve its performance for nonlinear decision models. Methods Our method provides accurate EVSI estimates by approximating the conditional expectation of the benefit based on 2 steps. First, a Taylor series approximation is applied to estimate the conditional expectation of the benefit as a function of the conditional moments of the parameters of interest using a spline, which is fitted to the samples of the parameters and the corresponding benefits. Next, the conditional moments of parameters are approximated by the conventional GA and Fisher information. The proposed approach is applied to several data collection exercises involving non-Gaussian parameters and nonlinear decision models. Its performance is compared with the nested Monte Carlo method, the conventional GA approach, and the nonparametric regression-based method for EVSI calculation. Results The proposed approach provides accurate EVSI estimates across different sample sizes when the parameters of interest are non-Gaussian and the decision models are nonlinear. The computational cost of the proposed method is similar to that of other novel methods. Conclusions The proposed approach can estimate EVSI across sample sizes accurately and efficiently, which may support researchers in determining an economically optimal study design using EVSI. Highlights The Gaussian approximation method efficiently estimates the expected value of sample information (EVSI) for clinical trials with varying sample sizes, but it may introduce bias when health economic models have a nonlinear structure. We introduce the spline-based Taylor series approximation method and combine it with the original Gaussian approximation to correct the nonlinearity-induced bias in EVSI estimation. Our approach can provide more precise EVSI estimates for complex decision models without sacrificing computational efficiency, which can enhance the resource allocation strategies from the cost-effective perspective.

Suggested Citation

  • Linke Li & Hawre Jalal & Anna Heath, 2024. "Accurate EVSI Estimation for Nonlinear Models Using the Gaussian Approximation Method," Medical Decision Making, , vol. 44(7), pages 787-801, October.
  • Handle: RePEc:sae:medema:v:44:y:2024:i:7:p:787-801
    DOI: 10.1177/0272989X241264287
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X241264287
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X241264287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Madan & Anthony E. Ades & Malcolm Price & Kathryn Maitland & Julie Jemutai & Paul Revill & Nicky J. Welton, 2014. "Strategies for Efficient Computation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 34(3), pages 327-342, April.
    2. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    3. Anna Heath & Natalia Kunst & Christopher Jackson & Mark Strong & Fernando Alarid-Escudero & Jeremy D. Goldhaber-Fiebert & Gianluca Baio & Nicolas A. Menzies & Hawre Jalal, 2020. "Calculating the Expected Value of Sample Information in Practice: Considerations from 3 Case Studies," Medical Decision Making, , vol. 40(3), pages 314-326, April.
    4. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    5. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    6. Michael Fairley & Lauren E. Cipriano & Jeremy D. Goldhaber-Fiebert, 2020. "Optimal Allocation of Research Funds under a Budget Constraint," Medical Decision Making, , vol. 40(6), pages 797-814, August.
    7. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2019. "Estimating the Expected Value of Sample Information across Different Sample Sizes Using Moment Matching and Nonlinear Regression," Medical Decision Making, , vol. 39(4), pages 347-359, May.
    8. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    9. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.
    10. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
    2. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    3. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    4. Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
    5. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    6. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    7. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.
    8. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    9. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    10. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    11. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    12. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    13. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    14. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    15. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    16. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    17. Haitham Tuffaha & Claire Rothery & Natalia Kunst & Chris Jackson & Mark Strong & Stephen Birch, 2021. "A Review of Web-Based Tools for Value-of-Information Analysis," Applied Health Economics and Health Policy, Springer, vol. 19(5), pages 645-651, September.
    18. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    19. Christopher McCabe & Giovanni Tramonti & Andrew Sutton & Peter Hall & Mike Paulden, 2021. "Probabilistic One-Way Sensitivity Analysis with Multiple Comparators: The Conditional Net Benefit Frontier," PharmacoEconomics, Springer, vol. 39(1), pages 19-24, January.
    20. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:44:y:2024:i:7:p:787-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.