IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v42y2022i2p143-155.html
   My bibliography  Save this article

Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial

Author

Listed:
  • Anna Heath

    (Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
    Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
    Department of Statistical Science, University College London, London, UK)

  • Mark Strong

    (School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK)

  • David Glynn

    (Centre for Health Economics, University of York, York, UK)

  • Natalia Kunst

    (Harvard Medical School & Harvard Pilgrim Health Care Institute, Harvard University, Boston, MA)

  • Nicky J. Welton

    (School of Social and Community Medicine, University of Bristol, Bristol, UK)

  • Jeremy D. Goldhaber-Fiebert

    (Stanford Health Policy, Centers for Health Policy and Primary Care and Outcomes Research, Stanford University, Stanford, CA, USA)

Abstract

The expected value of sample information (EVSI) can be used to prioritize avenues for future research and design studies that support medical decision making and offer value for money spent. EVSI is calculated based on 3 key elements. Two of these, a probabilistic model-based economic evaluation and updating model uncertainty based on simulated data, have been frequently discussed in the literature. By contrast, the third element, simulating data from the proposed studies, has received little attention. This tutorial contributes to bridging this gap by providing a step-by-step guide to simulating study data for EVSI calculations. We discuss a general-purpose algorithm for simulating data and demonstrate its use to simulate 3 different outcome types. We then discuss how to induce correlations in the generated data, how to adjust for common issues in study implementation such as missingness and censoring, and how individual patient data from previous studies can be leveraged to undertake EVSI calculations. For all examples, we provide comprehensive code written in the R language and, where possible, Excel spreadsheets in the supplementary materials. This tutorial facilitates practical EVSI calculations and allows EVSI to be used to prioritize research and design studies.

Suggested Citation

  • Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
  • Handle: RePEc:sae:medema:v:42:y:2022:i:2:p:143-155
    DOI: 10.1177/0272989X211026292
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X211026292
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X211026292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hawre Jalal & Fernando Alarid-Escudero, 2018. "A Gaussian Approximation Approach for Value of Information Analysis," Medical Decision Making, , vol. 38(2), pages 174-188, February.
    2. Stefano Conti & Karl Claxton, 2009. "Dimensions of Design Space: A Decision-Theoretic Approach to Optimal Research Design," Medical Decision Making, , vol. 29(6), pages 643-660, November.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    4. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    5. Nicolas A. Menzies, 2016. "An Efficient Estimator for the Expected Value of Sample Information," Medical Decision Making, , vol. 36(3), pages 308-320, April.
    6. Andrew H. Briggs & Ron Goeree & Gord Blackhouse & Bernie J. O’Brien, 2002. "Probabilistic Analysis of Cost-Effectiveness Models: Choosing between Treatment Strategies for Gastroesophageal Reflux Disease," Medical Decision Making, , vol. 22(4), pages 290-308, August.
    7. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2019. "Estimating the Expected Value of Sample Information across Different Sample Sizes Using Moment Matching and Nonlinear Regression," Medical Decision Making, , vol. 39(4), pages 347-359, May.
    8. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.
    9. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.
    2. David Glynn & Vijay S. Gc & Karl Claxton & Chris Littlewood & Claire Rothery, 2024. "Rapid Assessment of the Need for Evidence: Applying the Principles of Value of Information to Research Prioritisation," PharmacoEconomics, Springer, vol. 42(9), pages 919-928, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    2. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    3. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.
    4. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    5. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    6. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    7. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    8. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    9. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    10. Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
    11. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    12. Sun-Young Kim & Louise B. Russell & Anushua Sinha, 2015. "Handling Parameter Uncertainty in Cost-Effectiveness Models Simply and Responsibly," Medical Decision Making, , vol. 35(5), pages 567-569, July.
    13. Elena Losina & Elizabeth E Dervan & A David Paltiel & Yan Dong & R John Wright & Kurt P Spindler & Lisa A Mandl & Morgan H Jones & Robert G Marx & Clare E Safran-Norton & Jeffrey N Katz, 2015. "Defining the Value of Future Research to Identify the Preferred Treatment of Meniscal Tear in the Presence of Knee Osteoarthritis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    14. Daniele Bregantini, 2014. "Don’t Stop ’Til You Get Enough: a quickest detection approach to HTA," Discussion Papers 14/04, Department of Economics, University of York.
    15. Zoë Pieters & Mark Strong & Virginia E. Pitzer & Philippe Beutels & Joke Bilcke, 2020. "A Computationally Efficient Method for Probabilistic Parameter Threshold Analysis for Health Economic Evaluations," Medical Decision Making, , vol. 40(5), pages 669-679, July.
    16. Xuanqian Xie & Alexis K. Schaink & Sichen Liu & Myra Wang & Andrei Volodin, 2023. "Understanding bias in probabilistic analysis in model-based health economic evaluation," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(2), pages 307-319, March.
    17. David Glynn & Georgios Nikolaidis & Dina Jankovic & Nicky J. Welton, 2023. "Constructing Relative Effect Priors for Research Prioritization and Trial Design: A Meta-epidemiological Analysis," Medical Decision Making, , vol. 43(5), pages 553-563, July.
    18. Pepijn Vemer & Lucas M. A. Goossens & Maureen P. M. H. Rutten-van Mölken, 2014. "Not Simply More of the Same," Medical Decision Making, , vol. 34(8), pages 1048-1058, November.
    19. Joseph F. Levy & Patrick D. Meek & Marjorie A. Rosenberg, 2015. "US-Based Drug Cost Parameter Estimation for Economic Evaluations," Medical Decision Making, , vol. 35(5), pages 622-632, July.
    20. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:42:y:2022:i:2:p:143-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.