IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i1p3-20.html
   My bibliography  Save this article

An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example

Author

Listed:
  • Fernando Alarid-Escudero

    (Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes, Aguascalientes, Mexico)

  • Eline Krijkamp

    (Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands)

  • Eva A. Enns

    (Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis, MN, USA)

  • Alan Yang

    (The Hospital for Sick Children, Toronto, Ontario, Canada)

  • M. G. Myriam Hunink

    (Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
    Center for Health Decision Sciences, Harvard T.H. Chan School of Public Health, Boston, USA)

  • Petros Pechlivanoglou

    (The Hospital for Sick Children, Toronto and University of Toronto, Toronto, Ontario, Canada)

  • Hawre Jalal

    (School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada)

Abstract

Decision models can combine information from different sources to simulate the long-term consequences of alternative strategies in the presence of uncertainty. A cohort state-transition model (cSTM) is a decision model commonly used in medical decision making to simulate the transitions of a hypothetical cohort among various health states over time. This tutorial focuses on time-independent cSTM, in which transition probabilities among health states remain constant over time. We implement time-independent cSTM in R, an open-source mathematical and statistical programming language. We illustrate time-independent cSTMs using a previously published decision model, calculate costs and effectiveness outcomes, and conduct a cost-effectiveness analysis of multiple strategies, including a probabilistic sensitivity analysis. We provide open-source code in R to facilitate wider adoption. In a second, more advanced tutorial, we illustrate time-dependent cSTMs.

Suggested Citation

  • Fernando Alarid-Escudero & Eline Krijkamp & Eva A. Enns & Alan Yang & M. G. Myriam Hunink & Petros Pechlivanoglou & Hawre Jalal, 2023. "An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example," Medical Decision Making, , vol. 43(1), pages 3-20, January.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:1:p:3-20
    DOI: 10.1177/0272989X221103163
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X221103163
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X221103163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joost van Rosmalen & Mehlika Toy & James F. O’Mahony, 2013. "A Mathematical Approach for Evaluating Markov Models in Continuous Time without Discrete-Event Simulation," Medical Decision Making, , vol. 33(6), pages 767-779, August.
    2. J.Robert Beck & Stephen G. Pauker, 1983. "The Markov Process in Medical Prognosis," Medical Decision Making, , vol. 3(4), pages 419-458, December.
    3. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.
    4. Alexander Begun & Andrea Icks & Regina Waldeyer & Sandra Landwehr & Michael Koch & Guido Giani, 2013. "Identification of a Multistate Continuous-Time Nonhomogeneous Markov Chain Model for Patients with Decreased Renal Function," Medical Decision Making, , vol. 33(2), pages 298-306, February.
    5. Hawre Jalal & Petros Pechlivanoglou & Eline Krijkamp & Fernando Alarid-Escudero & Eva Enns & M. G. Myriam Hunink, 2017. "An Overview of R in Health Decision Sciences," Medical Decision Making, , vol. 37(7), pages 735-746, October.
    6. Andrew H. Briggs & A. E. Ades & Martin J. Price, 2003. "Probabilistic Sensitivity Analysis for Decision Trees with Multiple Branches: Use of the Dirichlet Distribution in a Bayesian Framework," Medical Decision Making, , vol. 23(4), pages 341-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Alarid-Escudero & Eline Krijkamp & Eva A. Enns & Alan Yang & M. G. Myriam Hunink & Petros Pechlivanoglou & Hawre Jalal, 2023. "A Tutorial on Time-Dependent Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example," Medical Decision Making, , vol. 43(1), pages 21-41, January.
    2. Isaac Corro Ramos & Talitha Feenstra & Salah Ghabri & Maiwenn Al, 2024. "Evaluating the Validation Process: Embracing Complexity and Transparency in Health Economic Modelling," PharmacoEconomics, Springer, vol. 42(7), pages 715-719, July.
    3. Alan Brennan & Samer Kharroubi & Anthony O'Hagan & Jim Chilcott, 2007. "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms," Medical Decision Making, , vol. 27(4), pages 448-470, July.
    4. Rachael DiSantostefano & Andrea Biddle & John Lavelle, 2006. "The Long-Term Cost Effectiveness of Treatments for Benign Prostatic Hyperplasia," PharmacoEconomics, Springer, vol. 24(2), pages 171-191, February.
    5. Nick Bansback & Roberta Ara & Sue Ward & Aslam Anis & Hyon Choi, 2009. "Statin Therapy in Rheumatoid Arthritis," PharmacoEconomics, Springer, vol. 27(1), pages 25-37, January.
    6. Karina Hansen & Christophe Lançon & Mondher Toumi, 2006. "Pharmacoeconomic modelling in schizophrenia," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 7(1), pages 19-29, March.
    7. Donna M. Edwards & Ross D. Shachter & Douglas K. Owens, 1998. "A Dynamic HIV-Transmission Model for Evaluating the Costs and Benefits of Vaccine Programs," Interfaces, INFORMS, vol. 28(3), pages 144-166, June.
    8. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    9. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    10. Franck Maunoury & Aurore Clément & Chizoba Nwankwo & Laurie Levy-Bachelot & Armand Abergel & Vincent Di Martino & Eric Thervet & Isabelle Durand-Zaleski, 2018. "Cost-effectiveness analysis of elbasvir-grazoprevir regimen for treating hepatitis C virus genotype 1 infection in stage 4-5 chronic kidney disease patients in France," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    11. Ke Gong & Ting Xie & Yong Luo & Hui Guo & Jinlan Chen & Zhiping Tan & Yifeng Yang & Li Xie, 2021. "Comprehensive analysis of lncRNA biomarkers in kidney renal clear cell carcinoma by lncRNA-mediated ceRNA network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    12. Lukas J.A. Stalpers & Hans J.M. Van Gasteren & Willem A.J. Van Daal, 1989. "DEALE-ing with Life Expectancy and Mortality Rates," Medical Decision Making, , vol. 9(2), pages 150-152, June.
    13. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    14. Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.
    15. Franck Maunoury & Anastasiia Motrunich & Maria Palka-Santini & Stéphanie F Bernatchez & Stéphane Ruckly & Jean-François Timsit, 2015. "Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    16. Rowan Iskandar, 2018. "A theoretical foundation for state-transition cohort models in health decision analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-11, December.
    17. Aslam Anis & Huiying Sun & Sonia Singh & John Woolcott & Bohdan Nosyk & Marc Brisson, 2006. "A Cost-Utility Analysis of Losartan versus Atenolol in the Treatment of Hypertension with Left Ventricular Hypertrophy," PharmacoEconomics, Springer, vol. 24(4), pages 387-400, April.
    18. C. Kent Kwoh & J. Robert Beck & Stephen G. Pauker, 1984. "Repeated Syncope with Negative Diagnostic Evaluation," Medical Decision Making, , vol. 4(3), pages 351-377, August.
    19. Yuanhui Zhang & Haipeng Wu & Brian T. Denton & James R. Wilson & Jennifer M. Lobo, 2019. "Probabilistic sensitivity analysis on Markov models with uncertain transition probabilities: an application in evaluating treatment decisions for type 2 diabetes," Health Care Management Science, Springer, vol. 22(1), pages 34-52, March.
    20. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:1:p:3-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.