IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i1p21-41.html
   My bibliography  Save this article

A Tutorial on Time-Dependent Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example

Author

Listed:
  • Fernando Alarid-Escudero

    (Department of Health Policy, School of Medicine, and Stanford Health Policy, Freeman-Spogli Institute for International Studies, Stanford University, Stanford, California, USA
    Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes, Aguascalientes, Mexico)

  • Eline Krijkamp

    (Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
    Erasmus School of Health Policy and Management, Erasmus University Rotterdam)

  • Eva A. Enns

    (Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis, MN, USA)

  • Alan Yang

    (The Hospital for Sick Children, Toronto, Ontario, Canada)

  • M. G. Myriam Hunink

    (Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
    Center for Health Decision Sciences, Harvard T.H. Chan School of Public Health, Boston, USA)

  • Petros Pechlivanoglou

    (The Hospital for Sick Children, Toronto, Ontario, Canada)

  • Hawre Jalal

    (University of Toronto, Toronto, Ontario, Canada (PP); University of Ottawa, Ottawa, Ontario, Canada)

Abstract

In an introductory tutorial, we illustrated building cohort state-transition models (cSTMs) in R, where the state transition probabilities were constant over time. However, in practice, many cSTMs require transitions, rewards, or both to vary over time (time dependent). This tutorial illustrates adding 2 types of time dependence using a previously published cost-effectiveness analysis of multiple strategies as an example. The first is simulation-time dependence, which allows for the transition probabilities to vary as a function of time as measured since the start of the simulation (e.g., varying probability of death as the cohort ages). The second is state-residence time dependence, allowing for history by tracking the time spent in any particular health state using tunnel states. We use these time-dependent cSTMs to conduct cost-effectiveness and probabilistic sensitivity analyses. We also obtain various epidemiological outcomes of interest from the outputs generated from the cSTM, such as survival probability and disease prevalence, often used for model calibration and validation. We present the mathematical notation first, followed by the R code to execute the calculations. The full R code is provided in a public code repository for broader implementation.

Suggested Citation

  • Fernando Alarid-Escudero & Eline Krijkamp & Eva A. Enns & Alan Yang & M. G. Myriam Hunink & Petros Pechlivanoglou & Hawre Jalal, 2023. "A Tutorial on Time-Dependent Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example," Medical Decision Making, , vol. 43(1), pages 21-41, January.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:1:p:21-41
    DOI: 10.1177/0272989X221121747
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X221121747
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X221121747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.
    2. Nicky J. Welton & A. E. Ades, 2005. "Estimation of Markov Chain Transition Probabilities and Rates from Fully and Partially Observed Data: Uncertainty Propagation, Evidence Synthesis, and Model Calibration," Medical Decision Making, , vol. 25(6), pages 633-645, November.
    3. Hawre Jalal & Petros Pechlivanoglou & Eline Krijkamp & Fernando Alarid-Escudero & Eva Enns & M. G. Myriam Hunink, 2017. "An Overview of R in Health Decision Sciences," Medical Decision Making, , vol. 37(7), pages 735-746, October.
    4. Anita W M Suijkerbuijk & Albert Jan van Hoek & Jelle Koopsen & Robert A de Man & Marie-Josee J Mangen & Hester E de Melker & Johan J Polder & G Ardine de Wit & Irene K Veldhuijzen, 2018. "Cost-effectiveness of screening for chronic hepatitis B and C among migrant populations in a low endemic country," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-16, November.
    5. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    6. Tristan Snowsill, 2019. "A New Method for Model-Based Health Economic Evaluation Utilizing and Extending Moment-Generating Functions," Medical Decision Making, , vol. 39(5), pages 523-539, July.
    7. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    8. Patricia J. Rodriguez & Zachary J. Ward & Michael W. Long & S. Bryn Austin & Davene R. Wright, 2021. "Applied Methods for Estimating Transition Probabilities from Electronic Health Record Data," Medical Decision Making, , vol. 41(2), pages 143-152, February.
    9. Elamin H. Elbasha & Jagpreet Chhatwal, 2016. "Theoretical Foundations and Practical Applications of Within-Cycle Correction Methods," Medical Decision Making, , vol. 36(1), pages 115-131, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Corro Ramos & Talitha Feenstra & Salah Ghabri & Maiwenn Al, 2024. "Evaluating the Validation Process: Embracing Complexity and Transparency in Health Economic Modelling," PharmacoEconomics, Springer, vol. 42(7), pages 715-719, July.
    2. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    3. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    5. Fernando Alarid-Escudero & Eline Krijkamp & Eva A. Enns & Alan Yang & M. G. Myriam Hunink & Petros Pechlivanoglou & Hawre Jalal, 2023. "An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example," Medical Decision Making, , vol. 43(1), pages 3-20, January.
    6. repec:jss:jstsof:38:i08 is not listed on IDEAS
    7. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    8. Elizabeth G Bond & Lusine Abrahamyan & Mohammad K A Khan & Andrea Gershon & Murray Krahn & Ping Li & Rajibul Mian & Nicholas Mitsakakis & Mohsen Sadatsafavi & Teresa To & Petros Pechlivanoglou & for t, 2020. "Understanding resource utilization and mortality in COPD to support policy making: A microsimulation study," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    9. Villacorta, Pablo J. & Verdegay, José L., 2016. "FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i08).
    10. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    11. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    12. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    13. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    14. Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
    15. Philippe Delquié, 2008. "The Value of Information and Intensity of Preference," Decision Analysis, INFORMS, vol. 5(3), pages 129-139, September.
    16. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    17. João Costa Freitas & Alberto Adrego Pinto & Óscar Felgueiras, 2024. "Game Theory for Predicting Stocks’ Closing Prices," Mathematics, MDPI, vol. 12(17), pages 1-49, August.
    18. Castillo-Riquelme, Marianela & Chalabi, Zaid & Lord, Joanne & Guhl, Felipe & Campbell-Lendrum, Diarmid & Davies, Clive & Fox-Rushby, Julia, 2008. "Modelling geographic variation in the cost-effectiveness of control policies for infectious vector diseases: The example of Chagas disease," Journal of Health Economics, Elsevier, vol. 27(2), pages 405-426, March.
    19. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    20. Ke Gong & Ting Xie & Yong Luo & Hui Guo & Jinlan Chen & Zhiping Tan & Yifeng Yang & Li Xie, 2021. "Comprehensive analysis of lncRNA biomarkers in kidney renal clear cell carcinoma by lncRNA-mediated ceRNA network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    21. John Hornberger & Katherine Robertus, 2005. "Comprehensive Evaluations of Health Care Interventions: The Realism-Transparency Tradeoff," Medical Decision Making, , vol. 25(5), pages 490-492, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:1:p:21-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.