IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v33y2013i2p298-306.html
   My bibliography  Save this article

Identification of a Multistate Continuous-Time Nonhomogeneous Markov Chain Model for Patients with Decreased Renal Function

Author

Listed:
  • Alexander Begun
  • Andrea Icks
  • Regina Waldeyer
  • Sandra Landwehr
  • Michael Koch
  • Guido Giani

Abstract

Objectives . Markov chain models are frequently used to study the clinical course of chronic diseases. The aim of this article is to adopt statistical methods to describe the time dynamics of chronically ill patients when 2 kinds of data sets—fully and partially observable data are available. Model . We propose a 6-state continuous-time Markov chain model for the progression of chronic kidney disease (CKD), where little is known about the transitions between the disease stages. States 1 to 3 of the model correspond to stages III to V of chronic kidney disease in the Kidney Disease Outcomes Quality Initiative (KDOQI) CKD classification. States 4 and 5 relate to dialysis and transplantation (renal replacement therapy), respectively. Death is the (absorbing) state 6. Methods and Data . The model can be investigated and identified using Kolmogorov’s forward equations and the methods of survival analysis. Age dependency, covariates in the form of the Cox regression, and unobservable risks of transition (frailties) can be included in the model. We applied our model to a data set consisting of all 2097 patients from all renal centers in a region in North Rhine-Westphalia (Germany) in 2005–2010. Results . We compared transitions and relative risks to the few data published and found them to be reasonable. For example, patients with diabetes had a significantly higher risk for disease progression compared with patients without diabetes. Conclusions . In summary, modeling may help to quantify disease progression and its predictors when only partially observable prospective data are available.

Suggested Citation

  • Alexander Begun & Andrea Icks & Regina Waldeyer & Sandra Landwehr & Michael Koch & Guido Giani, 2013. "Identification of a Multistate Continuous-Time Nonhomogeneous Markov Chain Model for Patients with Decreased Renal Function," Medical Decision Making, , vol. 33(2), pages 298-306, February.
  • Handle: RePEc:sae:medema:v:33:y:2013:i:2:p:298-306
    DOI: 10.1177/0272989X12466731
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X12466731
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X12466731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sixten Borg & Ulf Persson & Tine Jess & Ole Østergaard Thomsen & Tryggve Ljung & Lene Riis & Pia Munkholm, 2010. "A Maximum Likelihood Estimator of a Markov Model for Disease Activity in Crohn’s Disease and Ulcerative Colitis for Annually Aggregated Partial Observations," Medical Decision Making, , vol. 30(1), pages 132-142, January.
    2. Gordon B. Hazen & James M. Pellissier, 1996. "Recursive Utility for Stochastic Trees," Operations Research, INFORMS, vol. 44(5), pages 788-809, October.
    3. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franck Maunoury & Aurore Clément & Chizoba Nwankwo & Laurie Levy-Bachelot & Armand Abergel & Vincent Di Martino & Eric Thervet & Isabelle Durand-Zaleski, 2018. "Cost-effectiveness analysis of elbasvir-grazoprevir regimen for treating hepatitis C virus genotype 1 infection in stage 4-5 chronic kidney disease patients in France," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    2. Fernando Alarid-Escudero & Eline Krijkamp & Eva A. Enns & Alan Yang & M. G. Myriam Hunink & Petros Pechlivanoglou & Hawre Jalal, 2023. "An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example," Medical Decision Making, , vol. 43(1), pages 3-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    2. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    3. Filipe Costa Souza & Wilton Bernardino & Silvio C. Patricio, 2024. "How life-table right-censoring affected the Brazilian social security factor: an application of the gamma-Gompertz-Makeham model," Journal of Population Research, Springer, vol. 41(3), pages 1-38, September.
    4. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    5. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    6. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    7. James W. Vaupel, 2002. "Post-Darwinian longevity," MPIDR Working Papers WP-2002-043, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Maxim S. Finkelstein, 2005. "Shocks in homogeneous and heterogeneous populations," MPIDR Working Papers WP-2005-024, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    10. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    11. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    12. Graziella Caselli & Franco Peracchi & Elisabetta Barbi & Rosa Maria Lipsi, 2003. "Differential Mortality and the Design of the Italian System of Public Pensions," LABOUR, CEIS, vol. 17(s1), pages 45-78, August.
    13. Enrique Acosta & Alain Gagnon & Nadine Ouellette & Robert R. Bourbeau & Marilia R. Nepomuceno & Alyson A. van Raalte, 2020. "The boomer penalty: excess mortality among baby boomers in Canada and the United States," MPIDR Working Papers WP-2020-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    15. Hess Wolfgang & Tutz Gerhard & Gertheiss Jan, 2016. "A Flexible Link Function for Discrete-Time Duration Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 455-481, August.
    16. Bas Klaauw & Limin Wang, 2011. "Child mortality in rural India," Journal of Population Economics, Springer;European Society for Population Economics, vol. 24(2), pages 601-628, April.
    17. Xian Liu, 2000. "Development of a Structural Hazard Rate Model in Sociological Research," Sociological Methods & Research, , vol. 29(1), pages 77-117, August.
    18. Hsieh Fushing, 2012. "Semiparametric efficient inferences for lifetime regression model with time-dependent covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 1-25, February.
    19. M S Finkelstein, 2008. "Reliability modelling for biological ageing," Journal of Risk and Reliability, , vol. 222(1), pages 1-6, March.
    20. Cizek, P. & Lei, J. & Ligthart, J.E., 2012. "The Determinants of VAT Introduction : A Spatial Duration Analysis," Other publications TiSEM 835efbcb-4537-4dab-aaa3-c, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:33:y:2013:i:2:p:298-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.