IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205543.html
   My bibliography  Save this article

A theoretical foundation for state-transition cohort models in health decision analysis

Author

Listed:
  • Rowan Iskandar

Abstract

Following its introduction over three decades ago, the cohort model has been used extensively to model population trajectories over time in decision-analytic modeling studies. However, the stochastic process underlying cohort models has not been properly described. In this study, we explicate the stochastic process underlying a cohort model, by carefully formulating the dynamics of populations across health states and assigning probability rules on these dynamics. From this formulation, we explicate a mathematical representation of the system, which is given by the master equation. We solve the master equation by using the probability generation function method to obtain the explicit form of the probability of observing a particular realization of the system at an arbitrary time. The resulting generating function is used to derive the analytical expressions for calculating the mean and the variance of the process. Secondly, we represent the cohort model by a difference equation for the number of individuals across all states. From the difference equation, a continuous-time cohort model is recovered and takes the form of an ordinary differential equation. To show the equivalence between the derived stochastic process and the cohort model, we conduct a numerical exercise. We demonstrate that the population trajectories generated from the formulas match those from the cohort model simulation. In summary, the commonly-used cohort model represent the average of a continuous-time stochastic process on a multidimensional integer lattice governed by a master equation. Knowledge of the stochastic process underlying a cohort model provides a theoretical foundation for the modeling method.

Suggested Citation

  • Rowan Iskandar, 2018. "A theoretical foundation for state-transition cohort models in health decision analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-11, December.
  • Handle: RePEc:plo:pone00:0205543
    DOI: 10.1371/journal.pone.0205543
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205543
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205543&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerardus W. J. Frederix & Johan G. C. van Hasselt & Johan L. Severens & Anke M. Hövels & Alwin D. R. Huitema & Jan A. M. Raaijmakers & Jan H. M. Schellens, 2013. "Development of a Framework for Cohort Simulation in Cost-Effectiveness Analyses Using a Multistep Ordinary Differential Equation Solver Algorithm in R," Medical Decision Making, , vol. 33(6), pages 780-792, August.
    2. J.Robert Beck & Stephen G. Pauker, 1983. "The Markov Process in Medical Prognosis," Medical Decision Making, , vol. 3(4), pages 419-458, December.
    3. David Naimark & Murray D. Krahn & Gary Naglie & Donald A. Redelmeier & Allan S. Detsky, 1997. "Primer on Medical Decision Analysis: Part 5—Working with Markov Processes," Medical Decision Making, , vol. 17(2), pages 152-159, April.
    4. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    2. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    3. Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.
    4. Franck Maunoury & Anastasiia Motrunich & Maria Palka-Santini & Stéphanie F Bernatchez & Stéphane Ruckly & Jean-François Timsit, 2015. "Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    5. Franck Maunoury & Christian Farinetto & Stéphane Ruckly & Jeremy Guenezan & Jean-Christophe Lucet & Alain Lepape & Julien Pascal & Bertrand Souweine & Olivier Mimoz & Jean-François Timsit, 2018. "Cost-effectiveness analysis of chlorhexidine-alcohol versus povidone iodine-alcohol solution in the prevention of intravascular-catheter-related bloodstream infections in France," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-16, May.
    6. Manouchehr Tavakoli & Neil Pumford & Mark Woodward & Alex Doney & John Chalmers & Stephen MacMahon & Ronald MacWalter, 2009. "An economic evaluation of a perindopril-based blood pressure lowering regimen for patients who have suffered a cerebrovascular event," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 10(1), pages 111-119, February.
    7. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    8. Aslam Anis & Huiying Sun & Sonia Singh & John Woolcott & Bohdan Nosyk & Marc Brisson, 2006. "A Cost-Utility Analysis of Losartan versus Atenolol in the Treatment of Hypertension with Left Ventricular Hypertrophy," PharmacoEconomics, Springer, vol. 24(4), pages 387-400, April.
    9. Uwe Siebert & Gaby Sroczynski & Jürgen Wasem & Wolfgang Greiner & Ulrike Ravens-Sieberer & Pamela Aidelsburger & Bärbel Kurth & Monika Bullinger & J.-Matthias Schulenburg & John Wong & Siegbert Rossol, 2005. "Using competence network collaboration and decision-analytic modeling to assess the cost-effectiveness of interferon α-2b plus ribavirin as initial treatment of chronic hepatitis C in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(2), pages 112-123, June.
    10. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    11. Simon Frey & Roland Linder & Georg Juckel & Tom Stargardt, 2014. "Cost-effectiveness of long-acting injectable risperidone versus flupentixol decanoate in the treatment of schizophrenia: a Markov model parameterized using administrative data," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(2), pages 133-142, March.
    12. Uwe Siebert, 2003. "When should decision-analytic modeling be used in the economic evaluation of health care?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 4(3), pages 143-150, September.
    13. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    14. Zixian, Liu & Xin, Ni & Yiliu, Liu & Qinglu, Song & Yukun, Wang, 2011. "Gastric esophageal surgery risk analysis with a fault tree and Markov integrated model," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1591-1600.
    15. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    16. Karina Hansen & Christophe Lançon & Mondher Toumi, 2006. "Pharmacoeconomic modelling in schizophrenia," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 7(1), pages 19-29, March.
    17. Malek B Hannouf & Chander Sehgal & Jeffrey Q Cao & Joseph D Mocanu & Eric Winquist & Gregory S Zaric, 2012. "Cost-Effectiveness of Adding Cetuximab to Platinum-Based Chemotherapy for First-Line Treatment of Recurrent or Metastatic Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    18. Bärnighausen, Till & Bloom, David E., 2009. ""Conditional scholarships" for HIV/AIDS health workers: Educating and retaining the workforce to provide antiretroviral treatment in sub-Saharan Africa," Social Science & Medicine, Elsevier, vol. 68(3), pages 544-551, February.
    19. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    20. Donna M. Edwards & Ross D. Shachter & Douglas K. Owens, 1998. "A Dynamic HIV-Transmission Model for Evaluating the Costs and Benefits of Vaccine Programs," Interfaces, INFORMS, vol. 28(3), pages 144-166, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.