IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v42y2022i5p637-648.html
   My bibliography  Save this article

A Revised Framework to Evaluate the Consistency Assumption Globally in a Network of Interventions

Author

Listed:
  • Loukia M. Spineli

    (Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany)

Abstract

Background The unrelated mean effects (UME) model has been proposed for evaluating the consistency assumption globally in the network of interventions. However, the UME model does not accommodate multiarm trials properly and omits comparisons between nonbaseline interventions in the multiarm trials not investigated in 2-arm trials. Methods We proposed a refinement of the UME model that tackles the limitations mentioned above. We also accompanied the scatterplots on the posterior mean deviance contributions of the trial arms under the network meta-analysis (NMA) and UME models with Bland-Altman plots to detect outlying trials contributing to poor model fit. We applied the refined and original UME models to 2 networks with multiarm trials. Results The original UME model omitted more than 20% of the observed comparisons in both networks. The thorough inspection of the individual data points’ deviance contribution using complementary plots in conjunction with the measures of model fit and the estimated between-trial variance indicated that the refined and original UME models revealed possible inconsistency in both examples. Conclusions The refined UME model allows proper accommodation of the multiarm trials and visualization of all observed evidence in complex networks of interventions. Furthermore, considering several complementary plots to investigate deviance helps draw informed conclusions on the possibility of global inconsistency in the network. Highlights We have refined the unrelated mean effects (UME) model to incorporate multiarm trials properly and to estimate all observed comparisons in complex networks of interventions. Forest plots with posterior summaries of all observed comparisons under the network meta-analysis and refined UME model can uncover the consequences of potential inconsistency in the network. Using complementary plots to investigate the individual data points’ deviance contribution in conjunction with model fit measures and estimated heterogeneity aid in detecting possible inconsistency.

Suggested Citation

  • Loukia M. Spineli, 2022. "A Revised Framework to Evaluate the Consistency Assumption Globally in a Network of Interventions," Medical Decision Making, , vol. 42(5), pages 637-648, July.
  • Handle: RePEc:sae:medema:v:42:y:2022:i:5:p:637-648
    DOI: 10.1177/0272989X211068005
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X211068005
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X211068005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu, Guobing & Ades, A.E., 2006. "Assessing Evidence Inconsistency in Mixed Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 447-459, June.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    2. David Lunn & Jessica Barrett & Michael Sweeting & Simon Thompson, 2013. "Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 551-572, August.
    3. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    4. Howard Thom & Frank Ender & Saisudha Samavedam & Caridad Perez Vivez & Subhajit Gupta & Mukesh Dhariwal & Jan de Haan & Derek O’Boyle, 2019. "Effect of AcrySof versus other intraocular lens properties on the risk of Nd:YAG capsulotomy after cataract surgery: A systematic literature review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    5. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    6. Peixia Cheng & Liheng Tan & Peishan Ning & Li Li & Yuyan Gao & Yue Wu & David C. Schwebel & Haitao Chu & Huaiqiong Yin & Guoqing Hu, 2018. "Comparative Effectiveness of Published Interventions for Elderly Fall Prevention: A Systematic Review and Network Meta-Analysis," IJERPH, MDPI, vol. 15(3), pages 1-14, March.
    7. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    8. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    9. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    10. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    11. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    14. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    15. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    16. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    17. repec:jss:jstsof:21:i08 is not listed on IDEAS
    18. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    20. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    21. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:42:y:2022:i:5:p:637-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.