IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v35y2015i7p912-926.html
   My bibliography  Save this article

Mapping Functions in Health-Related Quality of Life

Author

Listed:
  • Tracey A. Young
  • Clara Mukuria
  • Donna Rowen
  • John E. Brazier
  • Louise Longworth

Abstract

Background. Clinical trials in cancer frequently include cancer-specific measures of health but not preference-based measures such as the EQ-5D that are suitable for economic evaluation. Mapping functions have been developed to predict EQ-5D values from these measures, but there is considerable uncertainty about the most appropriate model to use, and many existing models are poor at predicting EQ-5D values. This study aims to investigate a range of potential models to develop mapping functions from 2 widely used cancer-specific measures (FACT-G and EORTC-QLQ-C30) and to identify the best model. Methods. Mapping models are fitted to predict EQ-5D-3L values using ordinary least squares (OLS), tobit, 2-part models, splining, and to EQ-5D item-level responses using response mapping from the FACT-G and QLQ-C30. A variety of model specifications are estimated. Model performance and predictive ability are compared. Analysis is based on 530 patients with various cancers for the FACT-G and 771 patients with multiple myeloma, breast cancer, and lung cancer for the QLQ-C30. Results. For FACT-G, OLS models most accurately predict mean EQ-5D values with the best predicting model using FACT-G items with similar results using tobit. Response mapping has low predictive ability. In contrast, for the QLQ-C30, response mapping has the most accurate predictions using QLQ-C30 dimensions. The QLQ-C30 has better predicted EQ-5D values across the range of possible values; however, few respondents in the FACT-G data set have low EQ-5D values, which reduces the accuracy at the severe end. Conclusions. OLS and tobit mapping functions perform well for both instruments. Response mapping gives the best model predictions for QLQ-C30. The generalizability of the FACT-G mapping function is limited to populations in moderate to good health.

Suggested Citation

  • Tracey A. Young & Clara Mukuria & Donna Rowen & John E. Brazier & Louise Longworth, 2015. "Mapping Functions in Health-Related Quality of Life," Medical Decision Making, , vol. 35(7), pages 912-926, October.
  • Handle: RePEc:sae:medema:v:35:y:2015:i:7:p:912-926
    DOI: 10.1177/0272989X15587497
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X15587497
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X15587497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rowen, D & Brazier, J & Roberts, J, 2008. "Mapping SF-36 onto the EQ-5D index: how reliable is the relationship?," MPRA Paper 29831, University Library of Munich, Germany.
    2. Matthijs M. Versteegh & Annemieke Leunis & Jolanda J. Luime & Mike Boggild & Carin A. Uyl-de Groot & Elly A. Stolk, 2012. "Mapping QLQ-C30, HAQ, and MSIS-29 on EQ-5D," Medical Decision Making, , vol. 32(4), pages 554-568, July.
    3. Ralph Crott & Andrew Briggs, 2010. "Mapping the QLQ-C30 quality of life cancer questionnaire to EQ-5D patient preferences," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(4), pages 427-434, August.
    4. John Brazier & Yaling Yang & Aki Tsuchiya & Donna Rowen, 2010. "A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(2), pages 215-225, April.
    5. Alastair M. Gray & Oliver Rivero-Arias & Philip M. Clarke, 2006. "Estimating the Association between SF-12 Responses and EQ-5D Utility Values by Response Mapping," Medical Decision Making, , vol. 26(1), pages 18-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Sofia Oliveira Gonçalves & Dimitra Panteli & Lars Neeb & Tobias Kurth & Annette Aigner, 2022. "HIT-6 and EQ-5D-5L in patients with migraine: assessment of common latent constructs and development of a mapping algorithm," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 47-57, February.
    2. Koonal K. Shah & Bryan Bennett & Andrew Lenny & Louise Longworth & John E. Brazier & Mark Oppe & A. Simon Pickard & James W. Shaw, 2021. "Adapting preference-based utility measures to capture the impact of cancer treatment-related symptoms," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1301-1309, November.
    3. Richard Huan Xu & Eliza Lai Yi Wong & Jun Jin & Ying Dou & Dong Dong, 2020. "Mapping of the EORTC QLQ-C30 to EQ-5D-5L index in patients with lymphomas," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(9), pages 1363-1373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Gu & Chris Bell & Marc Botteman & Xiang Ji & John Carter & Ben Hout, 2012. "Estimating Preference-Based EQ-5D Health State Utilities or Item Responses from Neuropathic Pain Scores," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(3), pages 185-197, September.
    2. Richard Huan Xu & Eliza Lai Yi Wong & Jun Jin & Ying Dou & Dong Dong, 2020. "Mapping of the EORTC QLQ-C30 to EQ-5D-5L index in patients with lymphomas," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(9), pages 1363-1373, December.
    3. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    4. Wijnen, Ben F.M. & Mosweu, Iris & Majoie, Marian H.J.M. & Ridsdale, Leone & de Kinderen, Reina J.A. & Evers, Silvia M.A.A. & McCrone, Paul, 2018. "A comparison of the responsiveness of EQ-5D-5L and the QOLIE-31P and mapping of QOLIE-31P to EQ-5D-5L in epilepsy," LSE Research Online Documents on Economics 106170, London School of Economics and Political Science, LSE Library.
    5. Hernández-Alava, Mónica & Pudney, Stephen, 2017. "Econometric modelling of multiple self-reports of health states: The switch from EQ-5D-3L to EQ-5D-5L in evaluating drug therapies for rheumatoid arthritis," Journal of Health Economics, Elsevier, vol. 55(C), pages 139-152.
    6. Ralph Crott & Andrew Briggs, 2010. "Mapping the QLQ-C30 quality of life cancer questionnaire to EQ-5D patient preferences," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(4), pages 427-434, August.
    7. Kailu Wang & Xiaopeng Guo & Siyue Yu & Lu Gao & Zihao Wang & Huijuan Zhu & Bing Xing & Shuyang Zhang & Dong Dong, 2021. "Mapping of the acromegaly quality of life questionnaire to ED-5D-5L index score among patients with acromegaly," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(9), pages 1381-1391, December.
    8. Fan Yang & Carlos K. H. Wong & Nan Luo & James Piercy & Rebecca Moon & James Jackson, 2019. "Mapping the kidney disease quality of life 36-item short form survey (KDQOL-36) to the EQ-5D-3L and the EQ-5D-5L in patients undergoing dialysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(8), pages 1195-1206, November.
    9. Oliver Rivero-Arias & Melissa Ouellet & Alastair Gray & Jane Wolstenholme & Peter M. Rothwell & Ramon Luengo-Fernandez, 2010. "Mapping the Modified Rankin Scale (mRS) Measurement into the Generic EuroQol (EQ-5D) Health Outcome," Medical Decision Making, , vol. 30(3), pages 341-354, May.
    10. Ben F. M. Wijnen & Iris Mosweu & Marian H. J. M. Majoie & Leone Ridsdale & Reina J. A. Kinderen & Silvia M. A. A. Evers & Paul McCrone, 2018. "A comparison of the responsiveness of EQ-5D-5L and the QOLIE-31P and mapping of QOLIE-31P to EQ-5D-5L in epilepsy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(6), pages 861-870, July.
    11. Beth Woods & Andrea Manca & Helen Weatherly & Pedro Saramago & Eleftherios Sideris & Christina Giannopoulou & Stephen Rice & Mark Corbett & Andrew Vickers & Matthew Bowes & Hugh MacPherson & Mark Scul, 2017. "Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-18, March.
    12. Fan Yang & Nancy Devlin & Nan Luo, 2019. "Impact of mapped EQ-5D utilities on cost-effectiveness analysis: in the case of dialysis treatments," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(1), pages 99-105, February.
    13. John Brazier & Yaling Yang & Aki Tsuchiya & Donna Rowen, 2010. "A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(2), pages 215-225, April.
    14. Nick Kontodimopoulos & Panagiotis Bozios & John Yfantopoulos & Dimitris Niakas, 2013. "Longitudinal predictive ability of mapping models: examining post-intervention EQ-5D utilities derived from baseline MHAQ data in rheumatoid arthritis patients," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 307-314, April.
    15. Billingsley Kaambwa & Lucinda Billingham & Stirling Bryan, 2013. "Mapping utility scores from the Barthel index," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 231-241, April.
    16. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    17. Jeff Round & Mike Paulden, 2018. "Incorporating equity in economic evaluations: a multi-attribute equity state approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(4), pages 489-498, May.
    18. Brazier, JE & Yang, Y & Tsuchiya, A, 2008. "A review of studies mapping (or cross walking) from non-preference based measures of health to generic preference-based measures," MPRA Paper 29808, University Library of Munich, Germany.
    19. Cubi-Molla, P. & De Vries, J. & Devlin, N., 2013. "A Study of the Relationship Between Health and Subjective Well-being in Parkinson’s Disease Patients," Working Papers 13/12, Department of Economics, City University London.
    20. Zhongliang Zhou & Yu Fang & Zhiying Zhou & Dan Li & Dan Wang & Yanli Li & Li Lu & Jianmin Gao & Gang Chen, 2017. "Assessing Income-Related Health Inequality and Horizontal Inequity in China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(1), pages 241-256, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:35:y:2015:i:7:p:912-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.