IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v34y2014i3p300-310.html
   My bibliography  Save this article

Assessing Uncertainties Surrounding Combined Endpoints for Use in Economic Models

Author

Listed:
  • Bart M. Heeg
  • Ben A. van Hout

Abstract

Background: To increase power to detect a treatment effect, trials may combine multiple endpoints such as survival, myocardial infarctions, and strokes. When such trials are used to define the uncertainty associated with input parameters in an economic model, the output uncertainty will depend on the way in which the dependency between individual endpoints is modeled. Objective: To develop a flexible approach to model the interrelationship between individual components of a combined endpoint. Methods: A standard independent Dirichlet approach is compared with a dependent Dirichlet approach and logistic approaches. The logistic approaches use a link between the various endpoints by either an observed clinical variable (cholesterol) or a latent one. The logistic and Dirichlet methods are compared using 6 statin trials including 5 endpoints: myocardial infarction (MI), stroke, fatal MI, fatal stroke, and other cardiovascular death. The results are compared using the point estimates and uncertainty in a simplified cardiovascular model to calculate point estimates and uncertainty of estimated incremental life-years when applying probabilistic sensitivity analysis. The influence of the link between endpoints is tested by changing the prior in the logistic approaches. Results: The dependent Dirichlet approach reduces uncertainty up to 29% and changes the point estimate by up to 28%. The logistic approach with uninformative priors does not affect the uncertainty and point estimates. When strong priors are used, the uncertainty margins get smaller (up to 49%) and point estimates vary more. Including information about cholesterol has limited impact. Conclusions: The logistic approaches offer a flexible way to reflect one’s beliefs about the interrelationships between individual endpoints, potentially decreasing uncertainty margins. The approach works equally well with and without data concerning the underlying disease process.

Suggested Citation

  • Bart M. Heeg & Ben A. van Hout, 2014. "Assessing Uncertainties Surrounding Combined Endpoints for Use in Economic Models," Medical Decision Making, , vol. 34(3), pages 300-310, April.
  • Handle: RePEc:sae:medema:v:34:y:2014:i:3:p:300-310
    DOI: 10.1177/0272989X13517180
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X13517180
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X13517180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Andrew H. Briggs, 1999. "A Bayesian approach to stochastic cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 257-261, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G R Lagerweij & K G M Moons & G A de Wit & H Koffijberg, 2019. "Interpretation of CVD risk predictions in clinical practice: Mission impossible?," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Hu & Javiera Cartagena-Farias & Nicola Brimblecombe & Shari Jadoolal & Raphael Wittenberg, 2024. "Projected costs of informal care for older people in England," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(6), pages 1057-1070, August.
    2. Hu, Bo & Cartagena-Farias, Javiera & Brimblecombe, Nicola & Jadoolal, Shari & Wittenberg, Raphael, 2023. "Projected costs of informal care for older people in England," LSE Research Online Documents on Economics 121157, London School of Economics and Political Science, LSE Library.
    3. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    4. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    5. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    6. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    7. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    8. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    9. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    10. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    11. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    12. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    13. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    14. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    15. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    16. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    17. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    18. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    19. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    20. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:34:y:2014:i:3:p:300-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.