IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v30y2010i3p304-313.html
   My bibliography  Save this article

Uncertainty Assessment of Input Parameters for Economic Evaluation: Gauss’s Error Propagation, an Alternative to Established Methods

Author

Listed:
  • Björn Stollenwerk

    (Institute of Health Economics and Clinical Epidemiology of the University of Cologne, Gleueler Straße Cologne, Germany, bjoern.stollenwerk@helmholtz-muenchen.de, Department of Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria, Helmholtz Zentrum München (GmbH), Institute of Health Economics and Health Care Management, Neuherberg, Germany)

  • Stephanie Stock

    (Institute of Health Economics and Clinical Epidemiology of the University of Cologne, Gleueler Straße Cologne, Germany)

  • Uwe Siebert

    (Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, Center for Health Decision Science, Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts, Department of Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria)

  • Karl W. Lauterbach

    (Center for Health Decision Science, Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts, Institute of Health Economics and Clinical Epidemiology of the University of Cologne, Gleueler Straße Cologne, Germany)

  • Rolf Holle

    (Helmholtz Zentrum München (GmbH), Institute of Health Economics and Health Care Management, Neuherberg, Germany)

Abstract

In decision modeling for health economic evaluation, bootstrapping and the Cholesky decomposition method are frequently used to assess parameter uncertainty and to support probabilistic sensitivity analysis. An alternative, Gauss’s error propagation law, is rarely known but may be useful in some settings. Bootstrapping, the Cholesky decomposition method, and the error propagation law were compared regarding standard deviation estimates of a hypothetic parameter, which was derived from a regression model fitted to simulated data. Furthermore, to demonstrate its value, the error propagation law was applied to German administrative claims data. All 3 methods yielded almost identical estimates of the standard deviation of the target parameter. The error propagation law was much faster than the other 2 alternatives. Furthermore, it succeeded the claims data example, a case in which the established methods failed. In conclusion, the error propagation law is a useful extension of parameter uncertainty assessment.

Suggested Citation

  • Björn Stollenwerk & Stephanie Stock & Uwe Siebert & Karl W. Lauterbach & Rolf Holle, 2010. "Uncertainty Assessment of Input Parameters for Economic Evaluation: Gauss’s Error Propagation, an Alternative to Established Methods," Medical Decision Making, , vol. 30(3), pages 304-313, May.
  • Handle: RePEc:sae:medema:v:30:y:2010:i:3:p:304-313
    DOI: 10.1177/0272989X09347015
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X09347015
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X09347015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    3. Peter Doubilet & Colin B. Begg & Milton C. Weinstein & Peter Braun & Barbara J. McNeil, 1985. "Probabilistic Sensitivity Analysis Using Monte Carlo Simulation," Medical Decision Making, , vol. 5(2), pages 157-177, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sampson, Christopher & James, Marilyn & Huband, Nick & Geelan, Steve & McMurran, Mary, 2013. "Cost implications of treatment non-completion in a forensic personality disorder service," MPRA Paper 48757, University Library of Munich, Germany.
    2. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    3. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    4. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    5. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    6. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    7. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    8. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    9. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    10. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    11. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    12. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    13. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    14. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    15. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    16. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    17. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    18. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    19. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    20. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:30:y:2010:i:3:p:304-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.