IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v17y1997i3p241-262.html
   My bibliography  Save this article

Representation and Analysis of Medical Decision Problems with Influence Diagrams

Author

Listed:
  • Douglas K. Owens
  • Ross D. Shachter
  • Robert F. Nease JR

Abstract

Influence diagrams are a powerful graphic representation for decision models, complementary to decision trees. Influence diagrams and decision trees are different graphic representations for the same underlying mathematical model and operations. This article describes the elements of an influence diagram, and shows several familiar decision problems represented as decision trees and as influence diagrams. The authors also contrast the information highlighted in each graphic representation, demonstrate how to calculate the expected utilities of decision alternatives modeled with an influence diagram, provide an overview of the conceptual basis of the solution algorithms that have been developed for influence diagrams, discuss the strengths and limitations of influence diagrams relative to decision trees, and describe the mathematical operations that are used to evaluate both decision trees and influence diagrams. They use clinical examples to illustrate the mathematical operations of the influence-diagram-evaluation algorithm; these operations are arc reversal, chance node removal by averaging, and decision node removal by policy determination. Influence diagrams may be helpful when problems have a high degree of conditional independence, when large models are needed, when communication of the probabilistic relationships is important, or when the analysis requires extensive Bayesian updating. The choice of graphic representation should be governed by convenience, and will depend on the problem being analyzed, on the experience of the analyst, and on the background of the consumers of the analysis. Key words : decision analysis; influence diagrams; cost-effectiveness analysis; Bayesian updating; graphic representation. (Med Decis Making 1997;17:241-262)

Suggested Citation

  • Douglas K. Owens & Ross D. Shachter & Robert F. Nease JR, 1997. "Representation and Analysis of Medical Decision Problems with Influence Diagrams," Medical Decision Making, , vol. 17(3), pages 241-262, July.
  • Handle: RePEc:sae:medema:v:17:y:1997:i:3:p:241-262
    DOI: 10.1177/0272989X9701700301
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9701700301
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9701700301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
    2. Ross D. Shachter, 1988. "Probabilistic Inference and Influence Diagrams," Operations Research, INFORMS, vol. 36(4), pages 589-604, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    2. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.
    3. M Berkan Sesen & Ann E Nicholson & Rene Banares-Alcantara & Timor Kadir & Michael Brady, 2013. "Bayesian Networks for Clinical Decision Support in Lung Cancer Care," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    4. Douglas K. Owens, 2002. "Analytic Tools for Public Health Decision Making," Medical Decision Making, , vol. 22(1_suppl), pages 3-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    2. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    3. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.
    4. Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2017. "Performance analysis of an aggregation and disaggregation solution procedure to obtain a maintenance plan for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 652-662.
    5. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    6. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    7. Logan, Douglas M., 1990. "5.4. Decision analysis in engineering-economic modeling," Energy, Elsevier, vol. 15(7), pages 677-696.
    8. Regan, Peter J. & Holtzman, Samuel, 1995. "R&D Decision Advisor: An interactive approach to normative decision system model construction," European Journal of Operational Research, Elsevier, vol. 84(1), pages 116-133, July.
    9. Pontus Johnson & Robert Lagerström & Per Närman & Mårten Simonsson, 2007. "Enterprise architecture analysis with extended influence diagrams," Information Systems Frontiers, Springer, vol. 9(2), pages 163-180, July.
    10. Apiruk Detwarasiti & Ross D. Shachter, 2005. "Influence Diagrams for Team Decision Analysis," Decision Analysis, INFORMS, vol. 2(4), pages 207-228, December.
    11. Jesus Rios & David Rios Insua, 2009. "Supporting Negotiations over Influence Diagrams," Decision Analysis, INFORMS, vol. 6(3), pages 153-171, September.
    12. Dennis M. Buede, 2005. "Influence Diagrams: A Practitioner's Perspective," Decision Analysis, INFORMS, vol. 2(4), pages 235-237, December.
    13. repec:cup:judgdm:v:1:y:2006:i::p:162-173 is not listed on IDEAS
    14. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    15. Els Hannes & Diana Kusumastuti & Maikel Espinosa & Davy Janssens & Koen Vanhoof & Geert Wets, 2012. "Mental maps and travel behaviour: meanings and models," Journal of Geographical Systems, Springer, vol. 14(2), pages 143-165, April.
    16. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    17. Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2010. "Bayes geometric scaling model for common cause failure rates," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 70-76.
    18. Tan, Kim Hua & Zhan, YuanZhu & Ji, Guojun & Ye, Fei & Chang, Chingter, 2015. "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, Elsevier, vol. 165(C), pages 223-233.
    19. Robert F. Nease JR, 1996. "Do Violations of the Axioms of Expected Utility Theory Threaten Decision Analysis?," Medical Decision Making, , vol. 16(4), pages 399-403, October.
    20. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    21. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:17:y:1997:i:3:p:241-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.