IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i2p70-76.html
   My bibliography  Save this article

Bayes geometric scaling model for common cause failure rates

Author

Listed:
  • Zitrou, Athena
  • Bedford, Tim
  • Walls, Lesley

Abstract

This paper proposes a mathematical model to associate key operational, managerial and design characteristics of a system with the system's susceptibility towards common cause failure (CCF) events. The model, referred to as the geometric scaling (GS) model, is a mathematical form that allows us to investigate the effect of possible system modifications on risk. As such, the presented methodology results in a CCF model with a strong decision-making character. Based on a Bayesian framework, the GS model allows for the representation of epistemic uncertainty, the update of prior uncertainty in the light of operational data and the coherent use of observations coming from different systems. From a CCF perspective these are particularly useful model features, because CCF events are rare; hence, the operational data available is sparse and is characterised by considerable uncertainty, with databases typically containing events from nominally identical systems from different plants. The GS model also possesses an attractive modelling feature because it significantly decreases the amount of information elicited from experts required for quantification.

Suggested Citation

  • Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2010. "Bayes geometric scaling model for common cause failure rates," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 70-76.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:2:p:70-76
    DOI: 10.1016/j.ress.2009.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cup:judgdm:v:1:y:2006:i::p:162-173 is not listed on IDEAS
    2. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    3. Els Hannes & Diana Kusumastuti & Maikel Espinosa & Davy Janssens & Koen Vanhoof & Geert Wets, 2012. "Mental maps and travel behaviour: meanings and models," Journal of Geographical Systems, Springer, vol. 14(2), pages 143-165, April.
    4. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    5. Tan, Kim Hua & Zhan, YuanZhu & Ji, Guojun & Ye, Fei & Chang, Chingter, 2015. "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, Elsevier, vol. 165(C), pages 223-233.
    6. Robert F. Nease JR, 1996. "Do Violations of the Axioms of Expected Utility Theory Threaten Decision Analysis?," Medical Decision Making, , vol. 16(4), pages 399-403, October.
    7. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    8. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.
    9. Oepping, Hardy, 2016. "Ein Bayes-Netz zur Analyse des Absturzrisikos im Gerüstbau [A Bayesian network for analysing the risk of falling from height in scaffolding]," MPRA Paper 73602, University Library of Munich, Germany.
    10. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. David Rios Insua & Roi Naveiro & Victor Gallego, 2020. "Perspectives on Adversarial Classification," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    12. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    13. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    14. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Vic Hasselblad & Douglas C. McCrory, 1995. "Meta-analytic Tools for Medical Decision Making: A Practical Guide," Medical Decision Making, , vol. 15(1), pages 81-96, February.
    16. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    17. Thwaites, Peter A. & Smith, Jim Q., 2018. "A graphical method for simplifying Bayesian games," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 3-11.
    18. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.
    19. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    20. Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
    21. Ruth Y. Dicdican & Yacov Y. Haimes, 2005. "Relating multiobjective decision trees to the multiobjective risk impact analysis method," Systems Engineering, John Wiley & Sons, vol. 8(2), pages 95-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:2:p:70-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.