IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v21y2024i2p205-227.html
   My bibliography  Save this article

Verification, validation, and accreditation for models and simulations in the Australian defence context: a review

Author

Listed:
  • Kerryn R Owen
  • Ripon K Chakrabortty

Abstract

Building simulation models that are valid and credible is an enduring challenge in the Australian Defence Organisation (ADO) context. Establishing validity and credibility can be achieved through the rigorous use of appropriate Verification, Validation, and Accreditation (VVA) processes. Such processes are well-known in modeling and simulation (M&S) practice. However, these are generally not applied within the ADO, typically due to resourcing concerns and a lack of authoritative guidance. Even if there are any, due to security concerns and commercial reasons, the application of M&S within ADO is generally not published in open-access platforms. Depending on where in the M&S life-cycle VVA is started, it may also serve a secondary aim of risk reduction, assisting in the early discovery of possible problems or mistakes. This research reviews current VVA practices from academic literature and recommends processes that are appropriate for application to combat simulation tools within the ADO context. A scoping review has been conducted to gather insight into current VVA practice in the M&S community. The results of this review are presented in the form of charting relevant characteristics from selected references. The scoping review shows that executable validation of simulation results against referent data sourced from physical experiments is the most prevalent form of VVA, with referent data from comparative models being a prevalent alternative. Furthermore, there is evident reliance on graphical comparison of data; this could be enhanced with objective data comparators, such as aggregate error measures or statistical techniques. Finally, there is an evident gap in VVA references from Australia, which could be addressed through the propagation and reporting of prevalent VVA practices within the ADO context.

Suggested Citation

  • Kerryn R Owen & Ripon K Chakrabortty, 2024. "Verification, validation, and accreditation for models and simulations in the Australian defence context: a review," The Journal of Defense Modeling and Simulation, , vol. 21(2), pages 205-227, April.
  • Handle: RePEc:sae:joudef:v:21:y:2024:i:2:p:205-227
    DOI: 10.1177/15485129221134632
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15485129221134632
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15485129221134632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 1995. "Verification and validation of simulation models," European Journal of Operational Research, Elsevier, vol. 82(1), pages 145-162, April.
    2. Paul Glover & Paul Pearce, 2020. "Rapid assessment and review of simulation modelling," Journal of Simulation, Taylor & Francis Journals, vol. 14(2), pages 145-155, April.
    3. Nageler, P. & Zahrer, G. & Heimrath, R. & Mach, T. & Mauthner, F. & Leusbrock, I. & Schranzhofer, H. & Hochenauer, C., 2017. "Novel validated method for GIS based automated dynamic urban building energy simulations," Energy, Elsevier, vol. 139(C), pages 142-154.
    4. David Oakley & Bhakti Stephan Onggo & Dave Worthington, 2020. "Symbiotic simulation for the operational management of inpatient beds: model development and validation using Δ-method," Health Care Management Science, Springer, vol. 23(1), pages 153-169, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    2. Edris Yousefi Rad & Mohammad Reza Mahpeykar, 2017. "A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades," Energies, MDPI, vol. 10(9), pages 1-37, August.
    3. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    4. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    5. Kleijnen, J.P.C., 1995. "Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments," Other publications TiSEM 87ee6ee0-592c-4204-ac50-6, Tilburg University, School of Economics and Management.
    6. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    7. Aumann, Craig A., 2007. "A methodology for developing simulation models of complex systems," Ecological Modelling, Elsevier, vol. 202(3), pages 385-396.
    8. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    9. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    10. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    11. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    12. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    13. Faustino Prieto & José María Sarabia & Enrique Calderín-Ojeda, 2021. "The nonlinear distribution of employment across municipalities," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 287-307, April.
    14. Rohit Kapoor & Bhavin J. Shah, 2016. "Simulation model for closed loop repairable parts inventory system with service level performance measures," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 23(1), pages 18-42.
    15. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.
    16. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    17. James E. Gentile & Gregory J. Davis & Samuel S. C. Rund, 2012. "Verifying agent-based models with steady-state analysis," Computational and Mathematical Organization Theory, Springer, vol. 18(4), pages 404-418, December.
    18. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    19. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    20. Mário Amorim Lopes & Álvaro Santos Almeida & Bernardo Almada-Lobo, 2018. "Forecasting the medical workforce: a stochastic agent-based simulation approach," Health Care Management Science, Springer, vol. 21(1), pages 52-75, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:21:y:2024:i:2:p:205-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.