IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v21y2024i1p87-102.html
   My bibliography  Save this article

Network characterization and simulation via mixed properties of the Barabási–Albert and Erdös–Rényi degree distribution

Author

Listed:
  • Fairul Mohd-Zaid
  • Christine Schubert Kabban
  • Richard F Deckro
  • Wright Shamp

Abstract

Social network analysis (SNA) is a tool for the operations researcher to understand, monitor, and exploit social and military structures which are key in the intelligence community. However, in order to study and influence a network of interest, the network must first be characterized; preferably to a known network model that captures a mixture of graphical properties exhibited by the social network of interest. In this work, we present a novel statistical method for both characterizing networks via a Binomial-Pareto maximum-likelihood approach and simulating the characterized network using a graph of mixed Barabási–Albert (BA, scale-free) and Erdös–Rényi (ER, randomness) properties. Characterization is performed through a combination of hypothesis tests and method of moments parameter estimation on Pareto and Doubly Truncated Binomial distributions. Application on real-world networks suggests that such networks may be characterized with a mixture of scale-free and random properties as modeled through BA and ER graphs. We demonstrate that our simulation methods are able to capture the degree distribution and density of the networks examined. These results demonstrate that this work establishes a statistical framework upon which network characterization and simulation may be accomplished, thus enabling the adaptation of such methods when generating, manipulating, and observing networks of interest.

Suggested Citation

  • Fairul Mohd-Zaid & Christine Schubert Kabban & Richard F Deckro & Wright Shamp, 2024. "Network characterization and simulation via mixed properties of the Barabási–Albert and Erdös–Rényi degree distribution," The Journal of Defense Modeling and Simulation, , vol. 21(1), pages 87-102, January.
  • Handle: RePEc:sae:joudef:v:21:y:2024:i:1:p:87-102
    DOI: 10.1177/15485129221110893
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15485129221110893
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15485129221110893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Birgitte Freiesleben de Blasio & Taral Guldahl Seierstad & Odd O. Aalen, 2011. "Frailty effects in networks: comparison and identification of individual heterogeneity versus preferential attachment in evolving networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(2), pages 239-259, March.
    2. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nowak, Piotr Bolesław, 2016. "The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 49-54.
    2. Camilo Alberto Cárdenas-Hurtado & Aaron Levi Garavito-Acosta & Jorge Hernán Toro-Córdoba, 2018. "Asymmetric Effects of Terms of Trade Shocks on Tradable and Non-tradable Investment Rates: The Colombian Case," Borradores de Economia 1043, Banco de la Republica de Colombia.
    3. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    4. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    5. Silva, Ivair R., 2017. "Confidence intervals through sequential Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 112-124.
    6. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    7. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    8. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    9. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    10. Mauricio Romero & Ã lvaro Riascos & Diego Jara, 2015. "On the Optimality of Answer-Copying Indices," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 435-453, October.
    11. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    12. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    13. Zhu, Qiansheng & Lang, Joseph B., 2022. "Test-inversion confidence intervals for estimands in contingency tables subject to equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    14. van Bentum, Thomas & Cramer, Erhard, 2019. "Stochastic monotonicity of MLEs of the mean for exponentially distributed lifetimes under hybrid censoring," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 1-8.
    15. Yusuke Narita, 2021. "A Theory of Quasi-Experimental Evaluation of School Quality," Management Science, INFORMS, vol. 67(8), pages 4982-5010, August.
    16. Grant J. Cameron & Hai‐Anh H. Dang & Mustafa Dinc & James Foster & Michael M. Lokshin, 2021. "Measuring the Statistical Capacity of Nations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 870-896, August.
    17. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    18. Schaarschmidt, Frank & Gerhard, Daniel & Vogel, Charlotte, 2017. "Simultaneous confidence intervals for comparisons of several multinomial samples," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 65-76.
    19. Fernández-Duque, Mauricio, 2022. "The probability of pluralistic ignorance," Journal of Economic Theory, Elsevier, vol. 202(C).
    20. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:21:y:2024:i:1:p:87-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.