IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v19y2022i1p57-106.html
   My bibliography  Save this article

Machine learning in cybersecurity: a comprehensive survey

Author

Listed:
  • Dipankar Dasgupta
  • Zahid Akhtar
  • Sajib Sen

Abstract

Today’s world is highly network interconnected owing to the pervasiveness of small personal devices (e.g., smartphones) as well as large computing devices or services (e.g., cloud computing or online banking), and thereby each passing minute millions of data bytes are being generated, processed, exchanged, shared, and utilized to yield outcomes in specific applications. Thus, securing the data, machines (devices), and user’s privacy in cyberspace has become an utmost concern for individuals, business organizations, and national governments. In recent years, machine learning (ML) has been widely employed in cybersecurity, for example, intrusion or malware detection and biometric-based user authentication. However, ML algorithms are vulnerable to attacks both in the training and testing phases, which usually leads to remarkable performance decreases and security breaches. Comparatively, limited studies have been conducted to understand the essence and degree of the vulnerabilities of ML techniques against security threats and their defensive mechanisms. It is imperative to systematize recent works related to cybersecurity using ML to seek the attention of researchers, scientists, and engineers. Therefore, in this paper, we provide a comprehensive survey of the works that have been carried out most recently (from 2013 to 2018) on ML in cybersecurity, describing the basics of cyber-attacks and corresponding defenses, the basics of the most commonly used ML algorithms, and proposed ML and data mining schemes for cybersecurity in terms of features, dimensionality reduction, and classification/detection techniques. In this context, this article also provides an overview of adversarial ML, including the security characteristics of deep learning methods. Finally, open issues and challenges in cybersecurity are highlighted and potential future research directions are discussed.

Suggested Citation

  • Dipankar Dasgupta & Zahid Akhtar & Sajib Sen, 2022. "Machine learning in cybersecurity: a comprehensive survey," The Journal of Defense Modeling and Simulation, , vol. 19(1), pages 57-106, January.
  • Handle: RePEc:sae:joudef:v:19:y:2022:i:1:p:57-106
    DOI: 10.1177/1548512920951275
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1548512920951275
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1548512920951275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianfa Wu & Dahao Peng & Zhuping Li & Li Zhao & Huanzhang Ling, 2015. "Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    2. Shin, Jinsoo & Son, Hanseong & Khalil ur, Rahman & Heo, Gyunyoung, 2015. "Development of a cyber security risk model using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 208-217.
    3. B. B. Gupta & Nalin A. G. Arachchilage & Kostas E. Psannis, 2018. "Defending against phishing attacks: taxonomy of methods, current issues and future directions," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(2), pages 247-267, February.
    4. Jason Thomas, 2018. "Individual Cyber Security: Empowering Employees to Resist Spear Phishing to Prevent Identity Theft and Ransomware Attacks," International Journal of Business and Management, Canadian Center of Science and Education, vol. 13(6), pages 1-1, April.
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    6. Scott Musman & Andrew Turner, 2018. "A game theoretic approach to cyber security risk management," The Journal of Defense Modeling and Simulation, , vol. 15(2), pages 127-146, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joakim Kävrestad & Allex Hagberg & Marcus Nohlberg & Jana Rambusch & Robert Roos & Steven Furnell, 2022. "Evaluation of Contextual and Game-Based Training for Phishing Detection," Future Internet, MDPI, vol. 14(4), pages 1-16, March.
    2. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    3. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    4. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    5. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    8. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    9. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    10. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    11. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    12. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    13. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    14. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    15. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    16. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    17. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    19. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    20. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:19:y:2022:i:1:p:57-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.