Defending against phishing attacks: taxonomy of methods, current issues and future directions
Author
Abstract
Suggested Citation
DOI: 10.1007/s11235-017-0334-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Joakim Kävrestad & Allex Hagberg & Marcus Nohlberg & Jana Rambusch & Robert Roos & Steven Furnell, 2022. "Evaluation of Contextual and Game-Based Training for Phishing Detection," Future Internet, MDPI, vol. 14(4), pages 1-16, March.
- Jaime A. Teixeira da Silva & Aceil Al-Khatib & Panagiotis Tsigaris, 2020. "Spam emails in academia: issues and costs," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1171-1188, February.
- Robert Karamagi, 2022. "A Review of Factors Affecting the Effectiveness of Phishing," Computer and Information Science, Canadian Center of Science and Education, vol. 15(1), pages 1-20, February.
- Abdul Basit & Maham Zafar & Xuan Liu & Abdul Rehman Javed & Zunera Jalil & Kashif Kifayat, 2021. "A comprehensive survey of AI-enabled phishing attacks detection techniques," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 139-154, January.
- Aurélien Baillon & Jeroen de Bruin & Aysil Emirmahmutoglu & Evelien van de Veer & Bram van Dijk, 2019. "Informing, simulating experience, or both : A field experiment on phishing risks," Post-Print hal-04325609, HAL.
- Aurélien Baillon & Jeroen de Bruin & Aysil Emirmahmutoglu & Evelien van de Veer & Bram van Dijk, 2019. "Informing, simulating experience, or both: A field experiment on phishing risks," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
- Altyeb Taha, 2021. "Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting," Mathematics, MDPI, vol. 9(21), pages 1-13, November.
- Dipankar Dasgupta & Zahid Akhtar & Sajib Sen, 2022. "Machine learning in cybersecurity: a comprehensive survey," The Journal of Defense Modeling and Simulation, , vol. 19(1), pages 57-106, January.
More about this item
Keywords
Phishing; Security; Malware; Social engineering; Spam; Visual similarity; Data mining; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:67:y:2018:i:2:d:10.1007_s11235-017-0334-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.