IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v46y2021i3p323-347.html
   My bibliography  Save this article

Hybridizing Machine Learning Methods and Finite Mixture Models for Estimating Heterogeneous Treatment Effects in Latent Classes

Author

Listed:
  • Youmi Suk
  • Jee-Seon Kim
  • Hyunseung Kang

    (5228University of Wisconsin–Madison)

Abstract

There has been increasing interest in exploring heterogeneous treatment effects using machine learning (ML) methods such as causal forests, Bayesian additive regression trees, and targeted maximum likelihood estimation. However, there is little work on applying these methods to estimate treatment effects in latent classes defined by well-established finite mixture/latent class models. This article proposes a hybrid method, a combination of finite mixture modeling and ML methods from causal inference to discover effect heterogeneity in latent classes. Our simulation study reveals that hybrid ML methods produced more precise and accurate estimates of treatment effects in latent classes. We also use hybrid ML methods to estimate the differential effects of private lessons across latent classes from Trends in International Mathematics and Science Study data.

Suggested Citation

  • Youmi Suk & Jee-Seon Kim & Hyunseung Kang, 2021. "Hybridizing Machine Learning Methods and Finite Mixture Models for Estimating Heterogeneous Treatment Effects in Latent Classes," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 323-347, June.
  • Handle: RePEc:sae:jedbes:v:46:y:2021:i:3:p:323-347
    DOI: 10.3102/1076998620951983
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620951983
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620951983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vermunt, Jeroen K., 2010. "Latent Class Modeling with Covariates: Two Improved Three-Step Approaches," Political Analysis, Cambridge University Press, vol. 18(4), pages 450-469.
    2. Hong, Guanglei & Raudenbush, Stephen W., 2006. "Evaluating Kindergarten Retention Policy: A Case Study of Causal Inference for Multilevel Observational Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 901-910, September.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
    5. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    6. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    7. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    8. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    9. Gruber, Susan & Laan, Mark van der, 2012. "tmle: An R Package for Targeted Maximum Likelihood Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i13).
    10. Vermunt, Jeroen K. & Magidson, Jay, 2003. "Latent class models for classification," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 531-537, January.
    11. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weicong Lyu & Jee-Seon Kim & Youmi Suk, 2023. "Estimating Heterogeneous Treatment Effects Within Latent Class Multilevel Models: A Bayesian Approach," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 3-36, February.
    2. Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    2. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    3. Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.
    4. Weicong Lyu & Jee-Seon Kim & Youmi Suk, 2023. "Estimating Heterogeneous Treatment Effects Within Latent Class Multilevel Models: A Bayesian Approach," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 3-36, February.
    5. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    6. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    10. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    11. Youmi Suk & Hyunseung Kang, 2022. "Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 310-343, March.
    12. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    13. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    14. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    15. Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
    16. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    17. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    19. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
    20. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:46:y:2021:i:3:p:323-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.