Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-020-00372-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Manabu Kuroki & Masami Miyakawa, 2003. "Covariate selection for estimating the causal effect of control plans by using causal diagrams," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 209-222, February.
- Elena Stanghellini & Eduwin Pakpahan, 2015.
"Identification of causal effects in linear models: beyond instrumental variables,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
- Elena Stanghellini & Eduwin Pakpahan, 2013. "Identification of casual effects in linear models: beyond Instrumental Variables," Quaderni del Dipartimento di Economia, Finanza e Statistica 117/2013, Università di Perugia, Dipartimento Economia.
- Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nanmo, Hisayoshi & Kuroki, Manabu, 2021. "Exact variance formula for the estimated mean outcome with external intervention based on the front-door criterion in Gaussian linear structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ryusei Shingaki & Hiroshi Kanda & Manabu Kuroki, 2021. "Selection and integration of generalized instrumental variables for estimating total effects," Statistical Papers, Springer, vol. 62(5), pages 2355-2381, October.
- Nanmo, Hisayoshi & Kuroki, Manabu, 2021. "Exact variance formula for the estimated mean outcome with external intervention based on the front-door criterion in Gaussian linear structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
- F Richard Guo & Emilija Perković & Andrea Rotnitzky, 2023. "Variable elimination, graph reduction and the efficient g-formula," Biometrika, Biometrika Trust, vol. 110(3), pages 739-761.
- Leonard Henckel & Emilija Perković & Marloes H. Maathuis, 2022. "Graphical criteria for efficient total effect estimation via adjustment in causal linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 579-599, April.
- Pearl Judea, 2014. "The Deductive Approach to Causal Inference," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 115-129, September.
- Burkhard Raunig, 2019.
"Background Indicators,"
Econometrics, MDPI, vol. 7(2), pages 1-14, May.
- Burkhard Raunig, 2016. "Background Indicators," Working Papers 204, Oesterreichische Nationalbank (Austrian Central Bank).
- Allman Elizabeth S. & Rhodes John A. & Stanghellini Elena & Valtorta Marco, 2015. "Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 189-205, September.
- AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
- Manabu Kuroki & Takahiro Hayashi, 2016. "On the Estimation Accuracy of Causal Effects using Supplementary Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 505-519, June.
- Manabu Kuroki, 2016. "The Identification of Direct and Indirect Effects in Studies with an Unmeasured Intermediate Variable," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 228-245, March.
- Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
- Breuer, Anita & Asiedu, Edward, 2017. "Can Gender-Targeted Employment Interventions Help Enhance Community Participation? Evidence from Urban Togo," World Development, Elsevier, vol. 96(C), pages 390-407.
- Tyler J. VanderWeele & James M. Robins, 2010. "Signed directed acyclic graphs for causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 111-127, January.
- Marie-Ann Sengewald & Steffi Pohl, 2019. "Compensation and Amplification of Attenuation Bias in Causal Effect Estimates," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 589-610, June.
- Elena Stanghellini & Eduwin Pakpahan, 2015.
"Identification of causal effects in linear models: beyond instrumental variables,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
- Elena Stanghellini & Eduwin Pakpahan, 2013. "Identification of casual effects in linear models: beyond Instrumental Variables," Quaderni del Dipartimento di Economia, Finanza e Statistica 117/2013, Università di Perugia, Dipartimento Economia.
- Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
- J. R. Lockwood & Daniel F. McCaffrey, 2019. "Impact Evaluation Using Analysis of Covariance With Error-Prone Covariates That Violate Surrogacy," Evaluation Review, , vol. 43(6), pages 335-369, December.
- Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
- J. R. Lockwood & D. McCaffrey, 2020. "Using hidden information and performance level boundaries to study student–teacher assignments: implications for estimating teacher causal effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1333-1362, October.
More about this item
Keywords
Causal effect; Identification; Path diagram; Structural causal model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:104:y:2020:i:4:d:10.1007_s10182-020-00372-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.