IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v42y2017i2p115-144.html
   My bibliography  Save this article

Latent Factors in Student–Teacher Interaction Factor Analysis

Author

Listed:
  • Thu Le
  • Daniel Bolt
  • Eric Camburn
  • Peter Goff
  • Karl Rohe

Abstract

Classroom interactions between students and teachers form a two-way or dyadic network. Measurements such as days absent, test scores, student ratings, or student grades can indicate the “quality†of the interaction. Together with the underlying bipartite graph, these values create a valued student–teacher dyadic interaction network. To study the broad structure of these values, we propose using interaction factor analysis (IFA), a recently developed statistical technique that can be used to investigate the hidden factors underlying the quality of student–teacher interactions. Our empirical study indicates there are latent teacher (i.e., teaching style) and student (i.e., preference for teaching style) types that influence the quality of interactions. Students and teachers of the same type tend to have more positive interactions, and those of differing types tend to have more negative interactions. IFA has the advantage of traditional factor analysis in that the types are not presupposed; instead, the types are identified by IFA and can be interpreted in post hoc analysis. Whereas traditional factor analysis requires one to observe all interactions, IFA performs well even when only a small fraction of potential interactions are actually observed.

Suggested Citation

  • Thu Le & Daniel Bolt & Eric Camburn & Peter Goff & Karl Rohe, 2017. "Latent Factors in Student–Teacher Interaction Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 42(2), pages 115-144, April.
  • Handle: RePEc:sae:jedbes:v:42:y:2017:i:2:p:115-144
    DOI: 10.3102/1076998616676407
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998616676407
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998616676407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Kirabo Jackson, 2013. "Match Quality, Worker Productivity, and Worker Mobility: Direct Evidence from Teachers," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1096-1116, October.
    2. J. R. Lockwood & Daniel F. McCaffrey, 2009. "Exploring Student-Teacher Interactions in Longitudinal Achievement Data," Education Finance and Policy, MIT Press, vol. 4(4), pages 439-467, October.
    3. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    4. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Jason B. & Mansfield, Richard K., 2016. "Task-specific experience and task-specific talent: Decomposing the productivity of high school teachers," Journal of Public Economics, Elsevier, vol. 140(C), pages 51-72.
    2. Figlio, D. & Karbownik, K. & Salvanes, K.G., 2016. "Education Research and Administrative Data," Handbook of the Economics of Education,, Elsevier.
    3. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2011. "The Long-Term Impacts of Teachers: Teacher Value-Added and Student Outcomes in Adulthood," NBER Working Papers 17699, National Bureau of Economic Research, Inc.
    4. Josh Kinsler, 2016. "Teacher Complementarities in Test Score Production: Evidence from Primary School," Journal of Labor Economics, University of Chicago Press, vol. 34(1), pages 29-61.
    5. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    6. C. Kirabo Jackson & Shanette C. Porter & John Q. Easton & Alyssa Blanchard & Sebastián Kiguel, 2020. "School Effects on Socioemotional Development, School-Based Arrests, and Educational Attainment," American Economic Review: Insights, American Economic Association, vol. 2(4), pages 491-508, December.
    7. Hyo Kang & Lee Fleming, 2020. "Non‐competes, business dynamism, and concentration: Evidence from a Florida case study," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 29(3), pages 663-685, July.
    8. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    9. Stacy, Brian, 2014. "Ranking Teachers when Teacher Value-Added is Heterogeneous Across Students," EconStor Preprints 104743, ZBW - Leibniz Information Centre for Economics.
    10. Michael Bates & Michael Dinerstein & Andrew C. Johnston & Isaac Sorkin, 2022. "Teacher Labor Market Equilibrium and Student Achievement," CESifo Working Paper Series 9551, CESifo.
    11. Hendricks, Matthew D., 2014. "Does it pay to pay teachers more? Evidence from Texas," Journal of Public Economics, Elsevier, vol. 109(C), pages 50-63.
    12. Papay, John P. & Kraft, Matthew A., 2015. "Productivity returns to experience in the teacher labor market: Methodological challenges and new evidence on long-term career improvement," Journal of Public Economics, Elsevier, vol. 130(C), pages 105-119.
    13. Diether W Beuermann & C Kirabo Jackson & Laia Navarro-Sola & Francisco Pardo, 2023. "What is a Good School, and Can Parents Tell? Evidence on the Multidimensionality of School Output," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(1), pages 65-101.
    14. Norman Cliff, 1962. "Analytic rotation to a functional relationship," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 283-295, September.
    15. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    16. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    17. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    18. Pope, Nolan G., 2019. "The effect of teacher ratings on teacher performance," Journal of Public Economics, Elsevier, vol. 172(C), pages 84-110.
    19. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    20. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:42:y:2017:i:2:p:115-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.