IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v36y2011i6p720-735.html
   My bibliography  Save this article

Robust Estimation of Latent Ability in Item Response Models

Author

Listed:
  • Christof Schuster

    (University of Giessen)

  • Ke-Hai Yuan

    (University of Notre Dame)

Abstract

Because of response disturbances such as guessing, cheating, or carelessness, item response models often can only approximate the “true†individual response probabilities. As a consequence, maximum-likelihood estimates of ability will be biased. Typically, the nature and extent to which response disturbances are present is unknown, and, therefore, accounting for them by altering the model is not possible. Even if the nature of the response disturbances were known, accounting for them by increasing model complexity could easily lead to sample size requirements for estimation purpose that would be difficult to achieve. An approach based on weighting the contributions of the item responses to the log likelihood function has been suggested by Mislevy and Bock. This estimation approach has been shown to effectively reduce bias of ability estimates in the presence of response disturbances. However, this approach is prone to produce infinite ability estimates for unexpected response patterns in which correct answers are sparse. An alternative robust estimator of ability is suggested that does not appear to produce infinite estimates. Limited simulation studies show that the two estimators are equivalent when evaluated in terms of mean squared error.

Suggested Citation

  • Christof Schuster & Ke-Hai Yuan, 2011. "Robust Estimation of Latent Ability in Item Response Models," Journal of Educational and Behavioral Statistics, , vol. 36(6), pages 720-735, December.
  • Handle: RePEc:sae:jedbes:v:36:y:2011:i:6:p:720-735
    DOI: 10.3102/1076998610396890
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998610396890
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998610396890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    2. Howard Wainer & Benjamin Wright, 1980. "Robust estimation of ability in the Rasch model," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 373-391, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Magis, 2016. "Efficient Standard Error Formulas of Ability Estimators with Dichotomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 184-200, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    2. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    3. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    4. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    7. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.
    8. Simar, Léopold & Wilson, Paul, 2022. "Modern Tools for Evaluating the Performance of Health-Care Providers," LIDAM Discussion Papers ISBA 2022006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    10. Tasche, Dirk, 2013. "Bayesian estimation of probabilities of default for low default portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 6(3), pages 302-326, July.
    11. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    12. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m -dependent random variables," LSE Research Online Documents on Economics 83635, London School of Economics and Political Science, LSE Library.
    13. Hirschberg, Joe & Lye, Jenny, 2017. "Inverting the indirect—The ellipse and the boomerang: Visualizing the confidence intervals of the structural coefficient from two-stage least squares," Journal of Econometrics, Elsevier, vol. 199(2), pages 173-183.
    14. Serguei Kaniovski & Alexander Zaigraev, 2018. "The probability of majority inversion in a two-stage voting system with three states," Theory and Decision, Springer, vol. 84(4), pages 525-546, June.
    15. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    17. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    18. Nair, Gopalan M. & Turlach, Berwin A., 2012. "The stochastic h-index," Journal of Informetrics, Elsevier, vol. 6(1), pages 80-87.
    19. Riko Kelter, 2021. "Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality," Computational Statistics, Springer, vol. 36(2), pages 1263-1288, June.
    20. Abhishek Ray & Koushiki Sarkar & Diganta Mukherjee, 2015. "Interlinkage between Psychological and Network Characteristics: A Preliminary Analysis," Studies in Microeconomics, , vol. 3(2), pages 77-88, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:36:y:2011:i:6:p:720-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.