IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i7p15501477211031750.html
   My bibliography  Save this article

An UAV-assisted VANET architecture for intelligent transportation system in smart cities

Author

Listed:
  • Ali Raza
  • Syed Hashim Raza Bukhari
  • Farhan Aadil
  • Zeshan Iqbal

Abstract

Vehicular ad hoc network is a pretty research vibrant area since last decade. It has been successfully used for intelligent transportation system and entertainment purposes for realization of smart cities. However, intermittent connectivity, high routing overhead, inflexible communication infrastructure, unscalable networks, and high packet collision are the key challenges that put hindrances on the wide applications of vehicular ad hoc network. The severity of these challenges become even more intensified when deployed in urban areas. To overcome these hurdles, integrating micro unmanned aerial vehicles with vehicular ad hoc network provides a viable solution. In this article, we proposed an unmanned aerial vehicle–assisted vehicular ad hoc network communication architecture in which unmanned aerial vehicles fly over the deployed area and provide communication services to underlying coverage area. Unmanned aerial vehicle–assisted vehicular ad hoc network avails the advantages of line-of-sight communication, load balancing, flexible, and cost effective deployment. The performance of the proposed model is evaluated against a case study of vehicle collision on highway. Results show that utilization of unmanned aerial vehicles ensures the guaranteed and timely delivery of emergency messages to nearby vehicles so that a safe action can be taken to avoid further damages.

Suggested Citation

  • Ali Raza & Syed Hashim Raza Bukhari & Farhan Aadil & Zeshan Iqbal, 2021. "An UAV-assisted VANET architecture for intelligent transportation system in smart cities," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:7:p:15501477211031750
    DOI: 10.1177/15501477211031750
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211031750
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211031750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rei-Heng Cheng & Chang-Wu Yu, 2023. "Combining Heterogeneous Vehicles to Build a Low-Cost and Real-Time Wireless Charging Sensor Network," Energies, MDPI, vol. 16(8), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    3. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    4. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    5. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    6. Polychronis Spanoudakis & Gerasimos Moschopoulos & Theodoros Stefanoulis & Nikolaos Sarantinoudis & Eftichios Papadokokolakis & Ioannis Ioannou & Savvas Piperidis & Lefteris Doitsidis & Nikolaos C. Ts, 2020. "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    7. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    8. Jozef Salva & Miroslav Vanek & Marián Schwarz & Milada Gajtanska & Peter Tonhauzer & Anna Ďuricová, 2021. "An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    9. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    10. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    11. Marialisa Nigro & Marina Ferrara & Rosita De Vincentis & Carlo Liberto & Gaetano Valenti, 2021. "Data Driven Approaches for Sustainable Development of E-Mobility in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-19, July.
    12. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    13. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    14. Basso, Franco & Feijoo, Felipe & Pezoa, Raúl & Varas, Mauricio & Vidal, Brian, 2024. "The impact of electromobility in public transport: An estimation of energy consumption using disaggregated data in Santiago, Chile," Energy, Elsevier, vol. 286(C).
    15. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Hugo Ferreira & Carlos Manuel Rodrigues & Carlos Pinho, 2019. "Impact of Road Geometry on Vehicle Energy Consumption and CO 2 Emissions: An Energy-Efficiency Rating Methodology," Energies, MDPI, vol. 13(1), pages 1-27, December.
    17. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    18. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    19. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. David Watling & Patrícia Baptista & Gonçalo Duarte & Jianbing Gao & Haibo Chen, 2022. "Systematic Method for Developing Reference Driving Cycles Appropriate to Electric L-Category Vehicles," Energies, MDPI, vol. 15(9), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:7:p:15501477211031750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.