IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i7p1550147720908772.html
   My bibliography  Save this article

Intelligent energy optimization for advanced IoT analytics edge computing on wireless sensor networks

Author

Listed:
  • Israel Edem Agbehadji
  • Samuel Ofori Frimpong
  • Richard C Millham
  • Simon James Fong
  • Jason J Jung

Abstract

The current dispensation of big data analytics requires innovative ways of data capturing and transmission. One of the innovative approaches is the use of a sensor device. However, the challenge with a sensor network is how to balance the energy load of wireless sensor networks, which can be achieved by selecting sensor nodes with an adequate amount of energy from a cluster. The clustering technique is one of the approaches to solve this challenge because it optimizes energy in order to increase the lifetime of the sensor network. In this article, a novel bio-inspired clustering algorithm was proposed for a heterogeneous energy environment. The proposed algorithm (referred to as DEEC-KSA) was integrated with a distributed energy-efficient clustering algorithm to ensure efficient energy optimization and was evaluated through simulation and compared with benchmarked clustering algorithms. During the simulation, the dynamic nature of the proposed DEEC-KSA was observed using different parameters, which were expressed in percentages as 0.1%, 4.5%, 11.3%, and 34% while the percentage of the parameter for comparative algorithms was 10%. The simulation result showed that the performance of DEEC-KSA is efficient among the comparative clustering algorithms for energy optimization in terms of stability period, network lifetime, and network throughput. In addition, the proposed DEEC-KSA has the optimal time (in seconds) to send a higher number of packets to the base station successfully. The advantage of the proposed bio-inspired technique is that it utilizes random encircling and half-life period to quickly adapt to different rounds of iteration and jumps out of any local optimum that might not lead to an ideal cluster formation and better network performance.

Suggested Citation

  • Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C Millham & Simon James Fong & Jason J Jung, 2020. "Intelligent energy optimization for advanced IoT analytics edge computing on wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(7), pages 15501477209, July.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:7:p:1550147720908772
    DOI: 10.1177/1550147720908772
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720908772
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720908772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    2. Briytone Mutichiro & Younghan Kim, 2021. "User preference–based QoS-aware service function placement in IoT-Edge cloud," International Journal of Distributed Sensor Networks, , vol. 17(5), pages 15501477211, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    2. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    3. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    4. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    5. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    6. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    7. Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    8. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    9. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    10. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    11. Papa, Armando & Mital, Monika & Pisano, Paola & Del Giudice, Manlio, 2020. "E-health and wellbeing monitoring using smart healthcare devices: An empirical investigation," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Seung-Mo Je & Hyeyoung Ko & Jun-Ho Huh, 2021. "Accurate Demand Forecasting: A Flexible and Balanced Electric Power Production Big Data Virtualization Based on Photovoltaic Power Plant," Energies, MDPI, vol. 14(21), pages 1-31, October.
    13. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
    14. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    15. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    16. Kaitlin Kish, 2020. "Paying Attention: Big Data and Social Advertising as Barriers to Ecological Change," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    17. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Francesco Cappa & Stefano Franco & Federica Rosso, 2022. "Citizens and cities: Leveraging citizen science and big data for sustainable urban development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 648-667, February.
    19. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    20. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:7:p:1550147720908772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.