IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v43y2020i1-2p40-75.html
   My bibliography  Save this article

Testing Impact Measures in Spatial Autoregressive Models

Author

Listed:
  • Giuseppe Arbia
  • Anil K. Bera
  • Osman DoÄŸan
  • Süleyman TaÅŸpınar

Abstract

Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel data models. In this article, we compare three procedures for testing the significance of impact measures in the spatial linear regression models. These procedures include (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulation method. In a Monte Carlo study, we compare the finite sample properties of these procedures.

Suggested Citation

  • Giuseppe Arbia & Anil K. Bera & Osman DoÄŸan & Süleyman TaÅŸpınar, 2020. "Testing Impact Measures in Spatial Autoregressive Models," International Regional Science Review, , vol. 43(1-2), pages 40-75, January.
  • Handle: RePEc:sae:inrsre:v:43:y:2020:i:1-2:p:40-75
    DOI: 10.1177/0160017619826264
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017619826264
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017619826264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    2. LeSage, James P. & Chih, Yao-Yu, 2016. "Interpreting heterogeneous coefficient spatial autoregressive panel models," Economics Letters, Elsevier, vol. 142(C), pages 1-5.
    3. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    4. Lung-fei Lee & Jihai Yu, 2012. "QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 31-74, March.
    5. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    6. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    7. Qu, Xi & Lee, Lung-fei & Yu, Jihai, 2017. "QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices," Journal of Econometrics, Elsevier, vol. 197(2), pages 173-201.
    8. Qu, Xi & Lee, Lung-fei, 2015. "Estimating a spatial autoregressive model with an endogenous spatial weight matrix," Journal of Econometrics, Elsevier, vol. 184(2), pages 209-232.
    9. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    10. Harry Kelejian & George Tavlas & George Hondroyiannis, 2006. "A Spatial Modelling Approach to Contagion Among Emerging Economies," Open Economies Review, Springer, vol. 17(4), pages 423-441, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary Knepper & Christopher Yencha, 2023. "Public skate-parks and community well-being: A spatial econometric study," Economics Bulletin, AccessEcon, vol. 43(2), pages 868-881.
    2. Sedithippa J. Balaji & Munisamy Gopinath, 2023. "Spatial growth and convergence in Indian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 54(6), pages 761-777, November.
    3. Deng, Mingyu & Wang, Mingxi, 2022. "Artificial regression test diagnostics for impact measures in spatial models," Economics Letters, Elsevier, vol. 217(C).
    4. Benjamin Montmartin & Marcos Herrera-Gomez, 2022. "Imitative Pricing: The Importance of Neighborhood Effects in Physicians' Consultation Prices," GREDEG Working Papers 2022-02, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    5. Ye Yang & Osman Dogan & Suleyman Taspinar & Fei Jin, 2023. "A Review of Cross-Sectional Matrix Exponential Spatial Models," Papers 2311.14813, arXiv.org.
    6. Montmartin, Benjamin & Herrera-Gómez, Marcos, 2023. "Spatial dependence in physicians’ prices and additional fees: Evidence from France," Journal of Health Economics, Elsevier, vol. 88(C).
    7. J. Paul Elhorst, 2022. "The dynamic general nesting spatial econometric model for spatial panels with common factors: Further raising the bar," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(3), pages 249-267, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    2. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    3. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    4. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    5. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    6. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
    7. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    8. Shang, Qingyan & Poon, Jessie P.H. & Yue, Qingtang, 2012. "The role of regional knowledge spillovers on China's innovation," China Economic Review, Elsevier, vol. 23(4), pages 1164-1175.
    9. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    10. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    11. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    12. Simon K. C. Cheung & Tommy K. Y. Cheung, 2022. "Mixed membership nearest neighbor model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1578-1594, December.
    13. Marina Di Giacomo & Wolfgang Nagl & Philipp Steinbrunner, 2022. "Trump Digs Votes - The Effect of Trump's Coal Campaign on the Presidential Ballot in 2016," CESifo Working Paper Series 9817, CESifo.
    14. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    15. repec:rri:wpaper:201301 is not listed on IDEAS
    16. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    17. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    18. Bera, Anil K. & Doğan, Osman & Taşpınar, Süleyman, 2018. "Simple tests for endogeneity of spatial weights matrices," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 130-142.
    19. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    20. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    21. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:43:y:2020:i:1-2:p:40-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.