IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v217y2022ics0165176522002336.html
   My bibliography  Save this article

Artificial regression test diagnostics for impact measures in spatial models

Author

Listed:
  • Deng, Mingyu
  • Wang, Mingxi

Abstract

This paper derives two test statistics based on Outer-Product Gradient method and Double-Length Regression for testing spatial impact measures. Both are computationally simple. Their Monte Carlo performance becomes better as the sample size gets larger.

Suggested Citation

  • Deng, Mingyu & Wang, Mingxi, 2022. "Artificial regression test diagnostics for impact measures in spatial models," Economics Letters, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002336
    DOI: 10.1016/j.econlet.2022.110689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176522002336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2022.110689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1984. "Model Specification Tests Based on Artificial Linear Regressions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(2), pages 485-502, June.
    2. Süleyman Taşpınar & Osman Doğan & Wim P. M. Vijverberg, 2018. "GMM inference in spatial autoregressive models," Econometric Reviews, Taylor & Francis Journals, vol. 37(9), pages 931-954, October.
    3. James P. LeSage & Manfred M. Fischer, 2012. "Estimates of the Impact of Static and Dynamic Knowledge Spillovers on Regional Factor Productivity," International Regional Science Review, , vol. 35(1), pages 103-127, January.
    4. Baltagi, Badi H. & Yang, Zhenlin, 2013. "Heteroskedasticity and non-normality robust LM tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 725-739.
    5. Badi Baltagi & Long Liu, 2014. "Testing for spatial lag and spatial error dependence using double length artificial regressions," Statistical Papers, Springer, vol. 55(2), pages 477-486, May.
    6. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    7. Badi Baltagi & Dong Li, 2001. "Double Length Artificial Regressions For Testing Spatial Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 31-40.
    8. Benjamin Born & Jörg Breitung, 2011. "Simple regression‐based tests for spatial dependence," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 330-342, July.
    9. Giuseppe Arbia & Anil K. Bera & Osman Doğan & Süleyman Taşpınar, 2020. "Testing Impact Measures in Spatial Autoregressive Models," International Regional Science Review, , vol. 43(1-2), pages 40-75, January.
    10. He, Ming & Lin, Kuan-Pin, 2015. "Testing spatial effects and random effects in a nested panel data model," Economics Letters, Elsevier, vol. 135(C), pages 85-91.
    11. Suwanprasert, Wisarut, 2022. "The international spillover effects of US trade policy uncertainty," Economics Letters, Elsevier, vol. 212(C).
    12. Badi H. Baltagi & Long Liu, 2015. "Testing for Spacial Lag and Spatial Error Dependence in a Fixed Effects Panel Data Model Using Double Length Artificial Regressions," Center for Policy Research Working Papers 183, Center for Policy Research, Maxwell School, Syracuse University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi & Long Liu, 2015. "Testing for Spacial Lag and Spatial Error Dependence in a Fixed Effects Panel Data Model Using Double Length Artificial Regressions," Center for Policy Research Working Papers 183, Center for Policy Research, Maxwell School, Syracuse University.
    2. Li Dong & Le Canh, 2010. "Nonlinearity and Spatial Lag Dependence: Tests Based on Double-Length Regressions," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-18, June.
    3. Jin, Fei & Lee, Lung-fei, 2018. "Outer-product-of-gradients tests for spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 35-57.
    4. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    5. Fang, Ying & Park, Sung Y. & Zhang, Jinfeng, 2014. "A simple spatial dependence test robust to local and distributional misspecifications," Economics Letters, Elsevier, vol. 124(2), pages 203-206.
    6. Baltagi, Badi H. & Yang, Zhenlin, 2013. "Heteroskedasticity and non-normality robust LM tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 725-739.
    7. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    8. Badi Baltagi & Long Liu, 2014. "Testing for spatial lag and spatial error dependence using double length artificial regressions," Statistical Papers, Springer, vol. 55(2), pages 477-486, May.
    9. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    10. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    11. He, Ming & Lin, Kuan-Pin, 2015. "Testing spatial effects and random effects in a nested panel data model," Economics Letters, Elsevier, vol. 135(C), pages 85-91.
    12. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    13. Benjamin Born & Jörg Breitung, 2011. "Simple regression‐based tests for spatial dependence," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 330-342, July.
    14. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2021. "Fast estimation of matrix exponential spatial models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-50, December.
    15. Yang, Zhenlin & Yu, Jihai & Liu, Shew Fan, 2016. "Bias correction and refined inferences for fixed effects spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 52-72.
    16. Liu, Shew Fan & Yang, Zhenlin, 2015. "Improved inferences for spatial regression models," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 55-67.
    17. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    18. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    19. Debarsy, Nicolas & Yang, Zhenlin, 2018. "Editorial for the special issue entitled: New advances in spatial econometrics: Interactions matter," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 1-5.
    20. Baltagi, Badi H. & Pirotte, Alain & Yang, Zhenlin, 2021. "Diagnostic tests for homoskedasticity in spatial cross-sectional or panel models," Journal of Econometrics, Elsevier, vol. 224(2), pages 245-270.

    More about this item

    Keywords

    Spatial impact measure; Artificial regression; Double-Length Regression; Outer-Product Gradient;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.