IDEAS home Printed from https://ideas.repec.org/a/eme/majpps/02686900410509802.html
   My bibliography  Save this article

Can financial ratios detect fraudulent financial reporting?

Author

Listed:
  • Kathleen A. Kaminski
  • T. Sterling Wetzel
  • Liming Guan

Abstract

Keywords: Auditing, Financial reporting, Fraud

Suggested Citation

  • Kathleen A. Kaminski & T. Sterling Wetzel & Liming Guan, 2004. "Can financial ratios detect fraudulent financial reporting?," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 19(1), pages 15-28, January.
  • Handle: RePEc:eme:majpps:02686900410509802
    DOI: 10.1108/02686900410509802
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/02686900410509802/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/02686900410509802/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/02686900410509802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonika Gupta & Sushil Kumar Mehta, 2024. "Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies," Global Business Review, International Management Institute, vol. 25(5), pages 1290-1313, October.
    2. Cebi, Selcuk & Karakurt, Necip Fazıl & Kurtulus, Erkan & Tokgoz, Bunyamin, 2024. "Development of a decision support system for client acceptance in independent audit process," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    3. Sonika Gupta & Sushil Kumar Mehta, 2024. "Feature Selection for Dimension Reduction of Financial Data for Detection of Financial Statement Frauds in Context to Indian Companies," Global Business Review, International Management Institute, vol. 25(2), pages 323-348, April.
    4. Elias Zavitsanos & Dimitris Mavroeidis & Konstantinos Bougiatiotis & Eirini Spyropoulou & Lefteris Loukas & Georgios Paliouras, 2023. "Financial misstatement detection: a realistic evaluation," Papers 2305.17457, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:majpps:02686900410509802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.