IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v21y2020i4p883-891.html
   My bibliography  Save this article

COVID-19 Lifecycle: Predictive Modelling of States in India

Author

Listed:
  • Ramesh Behl
  • Manit Mishra

Abstract

The study captures the COVID-19 lifecycle in different states of India using predictive analytics. Drawing upon the seminal susceptible–infected–removed (SIR) model of capturing the spread of viral diseases, this study models the spread of COVID-19 in the ten most infected states of India (as on 30 April 2020). Using publicly available state-wise time series data of COVID-19 patients during the period 1–30 April 2020, the study uses the forecasting technique of auto-regressive integrated moving averages (ARIMA) to predict the likely population susceptible to COVID-19 in each state. Thereafter, based on the SIR model, predictive modelling of state-wise COVID-19 data is carried out to determine: (a) the predictive accuracy; (b) the likely number of days it would take for the disease to reach the peak number of infections in a state; (c) the likely number of infections at the peak; and (d) the state-wise end date. The SIR model is implemented by running Python 3.7.4 on Jupyter Notebook and using the package Matplotlib 3.2.1 for visualization. The study offers rich insights for policymakers as well as common citizens.

Suggested Citation

  • Ramesh Behl & Manit Mishra, 2020. "COVID-19 Lifecycle: Predictive Modelling of States in India," Global Business Review, International Management Institute, vol. 21(4), pages 883-891, August.
  • Handle: RePEc:sae:globus:v:21:y:2020:i:4:p:883-891
    DOI: 10.1177/0972150920934642
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972150920934642
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972150920934642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    2. Arindam Banik & Tirthankar Nag & Sahana Roy Chowdhury & Rajashri Chatterjee, 2020. "Why Do COVID-19 Fatality Rates Differ Across Countries? An Explorative Cross-country Study Based on Select Indicators," Global Business Review, International Management Institute, vol. 21(3), pages 607-625, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    2. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    3. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    4. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    5. Nicola Fuchs-Schündeln & Dirk Krueger & André Kurmann & Etienne Lalé & Alexander Ludwig & Irina Popova, 2023. "The Fiscal and Welfare Effects of Policy Responses to the Covid-19 School Closures," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(1), pages 35-98, March.
    6. Shami, Labib & Lazebnik, Teddy, 2022. "Economic aspects of the detection of new strains in a multi-strain epidemiological–mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    8. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    9. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    10. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    11. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    12. Viral V. Acharya & Zhengyang Jiang & Robert J. Richmond & Ernst-Ludwig von Thadden, 2020. "Divided We Fall: International Health and Trade Coordination During a Pandemic," NBER Working Papers 28176, National Bureau of Economic Research, Inc.
    13. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    14. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    15. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    16. Lazebnik, Teddy & Shami, Labib & Bunimovich-Mendrazitsky, Svetlana, 2023. "Intervention policy influence on the effect of epidemiological crisis on industry-level production through input–output networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Masashige Hamano & Munechika Katayama, 2021. "Epidemics and Macroeconomic Dynamics," Working Papers e162, Tokyo Center for Economic Research.
    18. Peter Kurrild-Klitgaard, 2024. "Size isn’t everything: COVID-19 and the role of government," Public Choice, Springer, vol. 200(1), pages 25-42, July.
    19. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    20. Harrison Hong & Neng Wang & Jinqiang Yang, 2020. "Implications of Stochastic Transmission Rates for Managing Pandemic Risks," NBER Working Papers 27218, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:21:y:2020:i:4:p:883-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.