IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v40y2016i5p444-486.html
   My bibliography  Save this article

Design and Analysis Considerations for Cluster Randomized Controlled Trials That Have a Small Number of Clusters

Author

Listed:
  • John Deke

Abstract

Background: Cluster randomized controlled trials (CRCTs) often require a large number of clusters in order to detect small effects with high probability. However, there are contexts where it may be possible to design a CRCT with a much smaller number of clusters (10 or fewer) and still detect meaningful effects. Objectives: The objective is to offer recommendations for best practices in design and analysis for small CRCTs. Research design: I use simulations to examine alternative design and analysis approaches. Specifically, I examine (1) which analytic approaches control Type I errors at the desired rate, (2) which design and analytic approaches yield the most power, (3) what is the design effect of spurious correlations, and (4) examples of specific scenarios under which impacts of different sizes can be detected with high probability. Results/Conclusions: I find that (1) mixed effects modeling and using Ordinary Least Squares (OLS) on data aggregated to the cluster level both control the Type I error rate, (2) randomization within blocks is always recommended, but how best to account for blocking through covariate adjustment depends on whether the precision gains offset the degrees of freedom loss, (3) power calculations can be accurate when design effects from small sample, spurious correlations are taken into account, and (4) it is very difficult to detect small effects with just four clusters, but with six or more clusters, there are realistic circumstances under which small effects can be detected with high probability.

Suggested Citation

  • John Deke, 2016. "Design and Analysis Considerations for Cluster Randomized Controlled Trials That Have a Small Number of Clusters," Evaluation Review, , vol. 40(5), pages 444-486, October.
  • Handle: RePEc:sae:evarev:v:40:y:2016:i:5:p:444-486
    DOI: 10.1177/0193841X16671680
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X16671680
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X16671680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:mpr:mprres:6372 is not listed on IDEAS
    2. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    3. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    4. Peter Z. Schochet, "undated". "Technical Methods Report: Statistical Power for Regression Discontinuity Designs in Education Evaluations," Mathematica Policy Research Reports 61fb6c057561451a8a6074508, Mathematica Policy Research.
    5. Cramer, J. S., 1987. "Mean and variance of R2 in small and moderate samples," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 253-266, July.
    6. repec:mpr:mprres:6573 is not listed on IDEAS
    7. repec:mpr:mprres:5863 is not listed on IDEAS
    8. repec:mpr:mprres:6371 is not listed on IDEAS
    9. Peter Z. Schochet, "undated". "Is Regression Adjustment Supported by the Neyman Model for Causal Inference? (Presentation)," Mathematica Policy Research Reports abfc39d59c714499b2fe42f68, Mathematica Policy Research.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Peter Z. Schochet, "undated". "Is Regression Adjustment Supported By the Neyman Model for Causal Inference?," Mathematica Policy Research Reports 782da2242fba458eb61752f96, Mathematica Policy Research.
    12. repec:mpr:mprres:8128 is not listed on IDEAS
    13. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    14. Peter Z. Schochet, "undated". "Statistical Power for Random Assignment Evaluations of Education Programs," Mathematica Policy Research Reports 6749d31ad72d4acf988f7dce5, Mathematica Policy Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott Baumgartner & Aly Frei & Diane Paulsell & Mindy Herman-Stahl & Rebecca Dunn & Chelsea Yamamoto, "undated". "Self-Regulation Training Approaches and Resources to Improve Staff Capacity for Implementing Healthy Marriage Programs for Youth: Final Report," Mathematica Policy Research Reports b280959fff854e16a71c3a288, Mathematica Policy Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:mpr:mprres:8128 is not listed on IDEAS
    2. repec:mpr:mprres:6286 is not listed on IDEAS
    3. Valentine Fays & Benoît Mahy & François Rycx, 2023. "Wage differences according to workers' origin: The role of working more upstream in GVCs," LABOUR, CEIS, vol. 37(2), pages 319-342, June.
    4. Kenneth Fortson & Natalya Verbitsky-Savitz & Emma Kopa & Philip Gleason, 2012. "Using an Experimental Evaluation of Charter Schools to Test Whether Nonexperimental Comparison Group Methods Can Replicate Experimental Impact Estimates," Mathematica Policy Research Reports 27f871b5b7b94f3a80278a593, Mathematica Policy Research.
    5. repec:mpr:mprres:6094 is not listed on IDEAS
    6. Hübler, Olaf, 2014. "Estimation of standard errors and treatment effects in empirical economics : methods and applications," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 47(1-2), pages 43-62.
    7. Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
    8. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    9. repec:mpr:mprres:6372 is not listed on IDEAS
    10. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    11. Joan Daouli & Michael Demoussis & Nicholas Giannakopoulos & Ioannis Laliotis, 2013. "Firm-Level Collective Bargaining and Wages in G reece: A Quantile Decomposition Analysis," British Journal of Industrial Relations, London School of Economics, vol. 51(1), pages 80-103, March.
    12. Peter Z. Schochet, 2021. "Statistical Power for Estimating Treatment Effects Using Difference-in-Differences and Comparative Interrupted Time Series Designs with Variation in Treatment Timing," Papers 2102.06770, arXiv.org, revised Oct 2021.
    13. Peter Z. Schochet, "undated". "Statistical Theory for the RCT-YES Software: Design-Based Causal Inference for RCTs," Mathematica Policy Research Reports a0c005c003c242308a92c02dc, Mathematica Policy Research.
    14. Nicola Gagliardi & Benoît Mahy & François Rycx, 2021. "Upstreamness, Wages and Gender: Equal Benefits for All?," British Journal of Industrial Relations, London School of Economics, vol. 59(1), pages 52-83, March.
    15. Peter Z. Schochet & Hanley Chiang, "undated". "Technical Methods Report: Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs," Mathematica Policy Research Reports 947d1823e3ff42208532a763d, Mathematica Policy Research.
    16. Peter Z. Schochet, 2010. "The Late Pretest Problem in Randomized Control Trials of Education Interventions," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 379-406, August.
    17. repec:mpr:mprres:7443 is not listed on IDEAS
    18. Peter Z. Schochet, "undated". "The Late Pretest Problem in Randomized Control Trials of Education Interventions," Mathematica Policy Research Reports fb514df5dbb84a5dbea79865c, Mathematica Policy Research.
    19. Peter Z. Schochet, "undated". "Technical Methods Report: Statistical Power for Regression Discontinuity Designs in Education Evaluations," Mathematica Policy Research Reports 61fb6c057561451a8a6074508, Mathematica Policy Research.
    20. Peter Z. Schochet, 2013. "Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference," Journal of Educational and Behavioral Statistics, , vol. 38(3), pages 219-238, June.
    21. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    22. Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
    23. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    24. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    25. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:40:y:2016:i:5:p:444-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.