IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v51y2024i8p1794-1813.html
   My bibliography  Save this article

Street characteristics and human activities in commercial districts: A clustering-based approach application for Shenzhen

Author

Listed:
  • Chendi Yang
  • Rui Ma
  • Hongqiang Fang
  • Siu Ming Lo
  • Jacqueline TY Lo

Abstract

As a significant public place, the commercial area has a potential correlation between its built environment and human activities. However, the current research primarily concentrates on the internal environment of the store and customer satisfaction, while the impact of some environmental features of the outer space of the business district on visitors is seldom systematically discussed. This study takes four commercial districts in Shenzhen as examples, and the streets were categorized into five types based on street characteristics using the cluster analysis method. The relationship between each type of street and the population distribution in the region was subsequently discussed. To this end, a holistic approach was adopted, integrating multi-source urban data such as street view panorama, points of interest (POI), and street and building vectors to describe the built environment. Furthermore, the distribution of people at different times, based on location-based services (LBS) data, was combined to establish statistical models of various streets in commercial districts and evaluate the relationship between street characteristics and human activities. The results demonstrate that the relationship between population distribution and spatial characteristics is different in the five types of streets. Different types of streets have their own advantages, and human activities in the business district are often not affected by this advantage, but by other characteristics. The impact of these factors varies significantly between weekdays and weekends. By systematically categorizing street types and assessing the impact of environmental factors on pedestrian flow, this study sheds new light on the renewal and development of urban commercial districts in the future.

Suggested Citation

  • Chendi Yang & Rui Ma & Hongqiang Fang & Siu Ming Lo & Jacqueline TY Lo, 2024. "Street characteristics and human activities in commercial districts: A clustering-based approach application for Shenzhen," Environment and Planning B, , vol. 51(8), pages 1794-1813, October.
  • Handle: RePEc:sae:envirb:v:51:y:2024:i:8:p:1794-1813
    DOI: 10.1177/23998083231224013
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083231224013
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083231224013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Teller, Christoph & Reutterer, Thomas, 2008. "The evolving concept of retail attractiveness: What makes retail agglomerations attractive when customers shop at them?," Journal of Retailing and Consumer Services, Elsevier, vol. 15(3), pages 127-143.
    3. Lingzhu Zhang & Yu Ye & Wenxin Zeng & Alain Chiaradia, 2019. "A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caigang, Zhuang & Shaoying, Li & Zhangzhi, Tan & Feng, Gao & Zhifeng, Wu, 2022. "Nonlinear and threshold effects of traffic condition and built environment on dockless bike sharing at street level," Journal of Transport Geography, Elsevier, vol. 102(C).
    2. Arranz-López, Aldo & Soria-Lara, Julio A & López-Escolano, Carlos & Pueyo Campos, Ángel, 2017. "Retail Mobility Environments: A methodological framework for integrating retail activity and non-motorised accessibility in Zaragoza, Spain," Journal of Transport Geography, Elsevier, vol. 58(C), pages 92-103.
    3. Kai Zhao & Jinhan Guo & Ziying Ma & Wanshu Wu, 2023. "Exploring the Spatiotemporal Heterogeneity and Stationarity in the Relationship between Street Vitality and Built Environment," SAGE Open, , vol. 13(1), pages 21582440231, February.
    4. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    5. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    6. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    7. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    8. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    9. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    10. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    11. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    12. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    13. Hamdi Lemamsha & Chris Papadopoulos & Gurch Randhawa, 2018. "Perceived Environmental Factors Associated with Obesity in Libyan Men and Women," IJERPH, MDPI, vol. 15(2), pages 1-16, February.
    14. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    15. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    16. Steven Spears & Marlon G Boarnet & Douglas Houston, 2017. "Driving reduction after the introduction of light rail transit: Evidence from an experimental-control group evaluation of the Los Angeles Expo Line," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2780-2799, September.
    17. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    18. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt0d84c2f4, University of California Transportation Center.
    19. Yongsheng Jiang & Dong Zhao & Andrew Sanderford & Jing Du, 2018. "Effects of Bank Lending on Urban Housing Prices for Sustainable Development: A Panel Analysis of Chinese Cities," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    20. Gilboa, Shaked & Mitchell, Vince, 2020. "The role of culture and purchasing power parity in shaping mall-shoppers’ profiles," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:51:y:2024:i:8:p:1794-1813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.