The two and half minute walk: Fast charging of electric vehicles and the economic value of walkability
Author
Abstract
Suggested Citation
DOI: 10.1177/2399808319885383
Download full text from publisher
References listed on IDEAS
- Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
- Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
- San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marcin Jacek Kłos & Grzegorz Sierpiński, 2023. "Strategy for the Siting of Electric Vehicle Charging Stations for Parcel Delivery Service Providers," Energies, MDPI, vol. 16(6), pages 1-18, March.
- Sikder, Sujit Kumar & Nagarajan, Magesh & Mustafee, Navonil, 2023. "Augmenting EV charging infrastructure towards transformative sustainable cities: An equity-based approach," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
- Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
- Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
- Kazemi, Mohammad Amin & Sedighizadeh, Mostafa & Mirzaei, Mohammad Javad & Homaee, Omid, 2016. "Optimal siting and sizing of distribution system operator owned EV parking lots," Applied Energy, Elsevier, vol. 179(C), pages 1176-1184.
- Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
- Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Se Hoon Baik & Young Gyu Jin & Yong Tae Yoon, 2018. "Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization," Energies, MDPI, vol. 11(9), pages 1-15, September.
- Cilio, Luca & Babacan, Oytun, 2021. "Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets," Applied Energy, Elsevier, vol. 295(C).
- Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
- Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
- Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
- Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
- Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
- Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
- Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
- Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
- Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
- Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
- Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
More about this item
Keywords
Electric vehicles; charging infrastructure; linear integer programming; set cover problem; walkability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:4:p:638-654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.