IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921005249.html
   My bibliography  Save this article

Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets

Author

Listed:
  • Cilio, Luca
  • Babacan, Oytun

Abstract

Electric taxis can help reducing air pollution in crowded urban areas but their city-wide operation requires a distributed rapid charging infrastructure. Building such rapid charging networks is currently capital intensive and therefore requires careful planning. Here, we propose a novel data-driven framework for deploying suitable rapid charging infrastructures in large urban areas for electric taxis. This framework combines an iterative clustering technique with a modified numerical optimisation method to determine the smallest feasible infrastructure for a level of charging availability that ensures uninterrupted electric taxi service. We provide a case study for Istanbul using real-time global positioning data from fossil-fuel taxis currently operational in the city. This case study tests the performance of the proposed infrastructure, determined by the framework, by simulating a taxi fleet of the same size as the one currently operating in Istanbul. Our results show that a sufficient charging infrastructure to serve a fully electric taxi fleet of 17,395 vehicles in a large city like Istanbul should consist of around 1,363–1,834 charging stations depending on the roll-out strategy. In the most suitable case, each charging station on average provides a daily amount of energy of 449.61 kWh and usually serves about 20 electric taxis per day. Furthermore, we observe that infrastructures with less than 1,300 charging stations would result in significant shortages of charging availability and adversely impact a reliable electric taxi service operation. While exact numbers of required charging stations would vary depending on the city characteristics and fleet size, the roll-out strategies, in addition to the underlying feasibility analysis presented here, would support transport authorities and other decision makers in shaping an appropriate urban transition strategy that accommodates electric taxi services.

Suggested Citation

  • Cilio, Luca & Babacan, Oytun, 2021. "Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005249
    DOI: 10.1016/j.apenergy.2021.117072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    2. Loeb, Benjamin & Kockelman, Kara M., 2019. "Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 374-385.
    3. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    4. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    5. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    6. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    7. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    8. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    9. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    10. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    11. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    12. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    13. Xie, Fei & Liu, Changzheng & Li, Shengyin & Lin, Zhenhong & Huang, Yongxi, 2018. "Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 261-276.
    14. Boeing, Geoff, 2018. "Clustering to Reduce Spatial Data Set Size," SocArXiv nzhdc, Center for Open Science.
    15. Liu, Jian, 2012. "Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing," Energy Policy, Elsevier, vol. 51(C), pages 544-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    2. Faustino, Fausta J. & Lopes, José Calixto & Melo, Joel D. & Sousa, Thales & Padilha-Feltrin, Antonio & Brito, José A.S. & Garcia, Claudio O., 2023. "Identifying charging zones to allocate public charging stations for electric vehicles," Energy, Elsevier, vol. 283(C).
    3. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Clairand, Jean-Michel & González-Rodríguez, Mario & Kumar, Rajesh & Vyas, Shashank & Escrivá-Escrivá, Guillermo, 2022. "Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements," Energy, Elsevier, vol. 256(C).
    5. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
    3. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    4. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    5. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    6. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    7. Li, Yanning & Li, Xinwei & Jenn, Alan, 2022. "Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California," Applied Energy, Elsevier, vol. 323(C).
    8. Alp, Osman & Tan, Tarkan & Udenio, Maximiliano, 2022. "Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions," Omega, Elsevier, vol. 109(C).
    9. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    10. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    11. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.
    12. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    13. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. Pernestål Brenden , Anna & Kristoffersson , Ida, 2018. "Effects of driverless vehicles: A review of simulations," Working papers in Transport Economics 2018:11, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    15. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    16. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    17. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    18. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    19. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    20. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.